Pieris rapae, a serious Lepidoptera pest of cultivated crucifers, utilizes midgut enzymes to digest food and detoxify secondary metabolites from host plants. A recombinant trypsin inhibitor (COTI) from nonhost plant, Cassia obtusifolia, significantly decreased activities of trypsin-like proteases in the larval midgut on Pieris rapae and could suppress the growth of larvae. In order to know how COTI took effect, transcriptional profiles of P. rapae midgut in response to COTI was studied. A total of 51,544 unigenes were generated and 45.86% of which had homologs in public databases. Most of the regulated genes associated with digestion, detoxification, homeostasis, and resistance were downregulated after ingestion of COTI. Meanwhile, several unigenes in the integrin signaling pathway might be involved in response to COTI. Furthermore, using comparative transcriptome analysis, we detected differently expressing genes and identified a new reference gene, UPF3, by qRT-polymerase chain reaction (PCR). Therefore, it was suggested that not only proteolysis inhibition, but also suppression of expression of genes involved in metabolism, development, signaling, and defense might account for the anti-insect resistance of COTI.

Download full-text PDF

Source
http://dx.doi.org/10.1002/arch.21427DOI Listing

Publication Analysis

Top Keywords

pieris rapae
12
comparative transcriptome
8
transcriptome analysis
8
cassia obtusifolia
8
trypsin inhibitor
8
response coti
8
coti
6
analysis insights
4
insights anti-insect
4
anti-insect molecular
4

Similar Publications

The geographic mosaic of coevolution predicts reciprocal selection, the first step in coevolution, to vary with changing biotic and abiotic environmental conditions. Studying how temperature affects reciprocal selection is essential to connect effects of global warming on the microevolutionary patterns of coevolution to the ecological processes underlying them. In this study, we investigated whether temperature influenced reciprocal selection between a plant (Brassica rapa) and its pollinating butterfly herbivore (Pieris rapae).

View Article and Find Full Text PDF

Scorpion insect neurotoxin LqhIT2 is a promising oral biopesticide: high-level preparation in Pichia pastoris and bioactivity assays.

Pest Manag Sci

December 2024

Postdoctoral Mobile Station of Biology, Genetic Engineering Research Center, College of Life Sciences, Chongqing University, Chongqing, China.

Background: Discovering insecticidal proteins with high activity and strict insect specificity and applying them to the biological control of insect pests is of great significance. Oral LqhIT2 has insecticidal activity, which most other insecticidal neurotoxin proteins do not have, but the large-scale preparation of the toxin is difficult and one of the obstacles to determining its anti-insect potential for biological control.

Results: In this study, the expression level of recombinant LqhIT2 (rLqhIT2) in Pichia pastoris was as high as 1.

View Article and Find Full Text PDF

DNA Repair and Mutagenesis of ADP-Ribosylated DNA by Pierisin.

Toxins (Basel)

July 2024

Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.

Pierisin is a DNA-targeting ADP-ribosyltransferase found in cabbage white butterfly (). Pierisin transfers an ADP-ribosyl moiety to the 2-amino group of the guanine residue in DNA, yielding -(ADP-ribos-1-yl)-2'-deoxyguanosine (-ADPR-dG). Generally, such chemically modified DNA is recognized as DNA damage and elicits cellular responses, including DNA repair pathways.

View Article and Find Full Text PDF

Caterpillar-parasitoid interactions: species-specific influences on host microbiome composition.

FEMS Microbiol Ecol

September 2024

CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Willem De Croylaan 46, B-3001 Leuven, Belgium.

There is increasing evidence that host-parasitoid interactions can have a pronounced impact on the microbiome of host insects, but it is unclear to what extent this is caused by the host and/or parasitoid. Here, we compared the internal and external microbiome of caterpillars of Pieris brassicae and Pieris rapae parasitized by Cotesia glomerata or Cotesia rubecula with nonparasitized caterpillars. Additionally, we investigated the internal and external microbiome of the parasitoid larvae.

View Article and Find Full Text PDF

In flying animals, wing morphology is typically assumed to influence flight behaviours. Whether seasonal polymorphism in butterfly morphology is linked to adaptive flight behaviour remains unresolved. Here, we compare the flight behaviours and wing morphologies of the spring and summer forms of two closely related butterfly species, and .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!