AI Article Synopsis

  • Rice paddies are unique ecosystems that support diverse microbial communities, influenced by water management and cultivation methods like DSR and SRI, which affect crop health and soil nutrients.
  • Research found significant differences in the rice leaf microbiome based on fertilizer use and cultivation methods, revealing diverse bacterial groups such as Bacillus and Pseudomonas.
  • Analyses showed that both the cultivation method and fertilizers notably altered the diversity and functioning of microbial communities on rice leaves, particularly affecting nitrogen and zinc levels.

Article Abstract

Rice paddies are man-made, cross-over ecologies of aquatic and terrestrial systems, which favor the proliferation of characteristic microbial communities. Moisture regimes under flooded and different levels of irrigation such as in direct seeded rice (DSR) and system of rice intensification (SRI) lead to modulation in crop physiology, soil nutrient availability, and the soil microbiome. However, the diversity of the rice phyllosphere microbiome is less investigated in terms of the influence of fertilizer application and the method of rice cultivation (conventional-flooded, DSR and SRI). Scanning electron micrographs revealed the presence of bacteria as aggregates at microsites of the leaves. Phylogenetic analysis of the dominant culturable bacterial isolates using 16S rDNA sequences revealed that they belonged to the genera - Bacillus, Brevibacillus, Pantoea, Enterobacter, Pseudomonas, Erwinia, and Streptomyces. Fertilizer application brought about a distinct modulation in the communities belonging to phyla such as Bacteriodetes, Firmicutes, and Planctomyces, besides Proteobacteria. The cyanobacterial population was much influenced by the cultivation methods, particularly the SRI. Principal component analysis (PCA), involving the culturable phyllospheric microbial groups and leaf attributes (nutrients and pigments), illustrated the importance of leaf nitrogen and zinc. Also, the communities of the phylum Firmicutes exhibited marked changes in terms of the diversity, not only due to the cultivation method, but also the application of fertilizers. Thus, the cultivation methods and fertilizer application played important roles in modulating both the structural (taxonomical) and functional attributes of the phyllosphere microbiome.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jobm.201700402DOI Listing

Publication Analysis

Top Keywords

cultivation methods
12
phyllosphere microbiome
12
fertilizer application
12
rice cultivation
8
rice
6
cultivation
5
influence fertilizers
4
fertilizers rice
4
methods abundance
4
abundance diversity
4

Similar Publications

Background: Oils from various sources are vital nutritional components with a variety of roles in our body. Niger seed (Guzoita abyssinica) is endemic to Ethiopia and is among the major oil seed crops grown in the country. The fatty acid composition and the concentration of other bioactive phytochemicals in it vary with species type, geographical origin, cultivation season, and varietal types.

View Article and Find Full Text PDF

Background: Data from observational and clinical studies indicate an association between skin microbiota and hidradenitis suppurativa (HS). However, the causal relationship between skin microbiota and HS remains to be elucidated.

Methods: We obtained data on skin microbiota and HS from summary statistics of genome-wide association studies and applied Mendelian randomization (MR) statistical methods to assess causality.

View Article and Find Full Text PDF

Assembly and Quantification of Co-Cultures Combining Heterotrophic Yeast with Phototrophic Sugar-Secreting Cyanobacteria.

J Vis Exp

December 2024

Institute for Synthetic Microbiology, Heinrich Heine University Düsseldorf; Department of Biochemistry and Molecular Biology, Michigan State University.

With the increasing demand for sustainable biotechnologies, mixed consortia containing a phototrophic microbe and heterotrophic partner species are being explored as a method for solar-driven bioproduction. One approach involves the use of CO2-fixing cyanobacteria that secrete organic carbon to support the metabolism of a co-cultivated heterotroph, which in turn transforms the carbon into higher-value goods or services. In this protocol, a technical description to assist the experimentalist in the establishment of a co-culture combining a sucrose-secreting cyanobacterial strain with a fungal partner(s), as represented by model yeast species, is provided.

View Article and Find Full Text PDF

Establishing a Three-Dimensional Coculture Module of Epithelial Cells Using Nanofibrous Membranes.

J Vis Exp

December 2024

Department of Pharmacology, School of Medicine, Ajou University; 3D Immune System Imaging Core Center, Ajou University;

Technical hurdles in a culture of epithelial cells include dedifferentiation and loss of function. Biomimetic three-dimensional (3D) cell culture methods can enhance cell culture efficiency. This study introduces an advanced two-layered culture system intended to cultivate epithelial cells as tissue-like layers with the culture of fibroblasts within a 3D environment.

View Article and Find Full Text PDF

Visualizing the DNA Damage Response in Purkinje Cells Using Cerebellar Organotypic Cultures.

J Vis Exp

December 2024

The David and Inez Myers Laboratory for Cancer Genetics, Department of Human Molecular Genetics and Biochemistry, Faculty of Health and Medical Sciences, School of Medicine, Tel Aviv University;

Cerebellar Purkinje cells (PCs) exhibit a unique interplay of high metabolic rates, specific chromatin architecture, and extensive transcriptional activity, making them particularly vulnerable to DNA damage. This necessitates an efficient DNA damage response (DDR) to prevent cerebellar degeneration, often initiated by PC dysfunction or loss. A notable example is the genome instability syndrome, ataxia-telangiectasia (A-T), marked by progressive PC depletion and cerebellar deterioration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!