The major β-haemoglobinopathies, sickle cell disease and β-thalassaemia, represent the most common monogenic disorders worldwide and a steadily increasing global disease burden. Allogeneic haematopoietic stem cell transplantation, the only curative therapy, is only applied to a small minority of patients. Common clinical management strategies act mainly downstream of the root causes of disease. The observation that elevated fetal haemoglobin expression ameliorates these disorders has motivated longstanding investigations into the mechanisms of haemoglobin switching. Landmark studies over the last decade have led to the identification of two potent transcriptional repressors of γ-globin, BCL11A and ZBTB7A. These regulators act with additional trans-acting epigenetic repressive complexes, lineage-defining factors and developmental programs to silence fetal haemoglobin by working on cis-acting sequences at the globin gene loci. Rapidly advancing genetic technology is enabling researchers to probe deeply the interplay between the molecular players required for γ-globin (HBG1/HBG2) silencing. Gene therapies may enable permanent cures with autologous modified haematopoietic stem cells that generate persistent fetal haemoglobin expression. Ultimately rational small molecule pharmacotherapies to reactivate HbF could extend benefits widely to patients.

Download full-text PDF

Source
http://dx.doi.org/10.1111/bjh.15038DOI Listing

Publication Analysis

Top Keywords

fetal haemoglobin
12
haemoglobin switching
8
haematopoietic stem
8
haemoglobin expression
8
haemoglobin
5
progress understanding
4
understanding manipulating
4
manipulating haemoglobin
4
switching haemoglobinopathies
4
haemoglobinopathies major
4

Similar Publications

: Cellular biobanks are of great interest for performing studies finalized in the development of personalized approaches for genetic diseases, including β-thalassemia and sickle cell disease (SCD), important diseases affecting the hematopoietic system. These inherited genetic diseases are characterized by a global distribution and the need for intensive health care. The aim of this report is to present an update on the composition of a cellular Thal-Biobank, to describe its utilization since 2016, to present data on its application in studies on fetal hemoglobin induction and on gene editing, and to discuss its employment as a "unique tool" during and after the COVID-19 pandemic.

View Article and Find Full Text PDF

Clustered, regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) system is a new gene editing tool that represents a revolution in gene therapy. This study aimed to review the clinical trials conducted to evaluate the efficacy and safety of the CRISPR/Cas9 system in treating thalassemia and sickle cell disease (SCD). We searched relevant literature using "CRISPR Cas", "thalassemia", "sickle cell" and "clinical trial" as subject terms in PubMed, Cochrane, Web of Science, and Google Scholar up to December 3rd, 2023.

View Article and Find Full Text PDF

The modern use of hydroxyurea for children with sickle cell anemia.

Haematologica

January 2025

Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati OH; University of Cincinnati College of Medicine, Cincinnati OH; Global Health Center, Cincinnati Children's Hospital Medical Center, Cincinnati OH.

Over the past 40 years, the introduction and refinement of hydroxyurea therapy has led to remarkable progress for the care of individuals with sickle cell anemia (SCA). From initial small proof-of-principle studies to multi-center Phase 3 controlled clinical trials and then numerous open-label studies, the consistent benefits of once-daily oral hydroxyurea have been demonstrated across the lifespan. Elevated fetal hemoglobin (HbF) serves as the most important treatment response, as HbF delays sickle hemoglobin polymerization and reduces erythrocyte sickling.

View Article and Find Full Text PDF

Background: Gestational diabetes mellitus (GDM) is the most common complication in pregnancy, representing a serious risk for the mother and fetus. Identifying new biomarkers to ameliorate the screening and improving GDM diagnosis and treatment is crucial. During the last decade, a few studies have used speckle tracking echocardiography (STE) for assessing the myocardial deformation properties of fetuses (FGDM) and infants (IGDM) of GDM women, providing not univocal results.

View Article and Find Full Text PDF

Objective: Gestational diabetes mellitus (GDM) is one of the most common complications during pregnancy. There is inconsistency between previous studies regarding the blood and inflammatory parameters levels among pregnant women and its association with GDM. This study aimed to investigate the relationship between blood parameters in relation to GDM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!