AI Article Synopsis

  • Nickel-manganese spinel oxide (NiMnO) was combined with reduced graphene oxide hydrogel (rGOH) to create a highly porous 3D structure, enhancing its electrochemical properties.
  • The hybrid material demonstrated exceptional glucose sensing capabilities, including high sensitivity, a wide measurable range, quick response time, and resistance to interference.
  • Additionally, it exhibited impressive supercapacitor performance, showing high capacitance and efficiency, making it suitable for use in a self-powered glucose sensor device.

Article Abstract

Nickel-manganese spinel oxide (NiMnO) was hybridized with reduced graphene oxide hydrogel (rGOH) via a facile solvothermal process and a highly porous three-dimensional (3D) structure was constructed. NiMnO/rGOH exhibited excellent electrochemical performance due to the high specific surface area, excellent electrocatalytic activity, and enhanced electrical conductivity due to the synergetic effects between the two components. The NiMnO/rGOH exhibited excellent glucose sensing performance with high sensitivity (1310.8 μA mM cm), a wide linear range (2 μM-20 mM), rapid response time (<3.5 s), and anti-interference properties. Furthermore, it also showed excellent supercapacitor performance with a high capacitance (396.85 F g) and excellent energy and power density on account of the large surface area and pseudo-capacitor behavior of NiMnO. A self-powered glucose sensor can be fabricated with NiMnO/rGOH as both supercapacitor and glucose sensing electrodes.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7nr07748cDOI Listing

Publication Analysis

Top Keywords

reduced graphene
8
graphene oxide
8
oxide hydrogel
8
nimno/rgoh exhibited
8
exhibited excellent
8
performance high
8
nimno spinel
4
spinel binary
4
binary nanostructure
4
nanostructure decorated
4

Similar Publications

Differential insulin response characteristics of graphene oxide-gold nanoparticle composites under varied synthesis conditions.

PLoS One

January 2025

Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, Department of Clinical Engineering and Material Supplies, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China.

The structural alterations in the constituent materials of nanocomposites such as graphene nanocomposites typically induce changes in their properties including mechanical, electrical, and optical properties. Therefore, by altering the preparation conditions of nanocomposites and investigating their responsiveness to basic biomolecules (such as proteins), it is possible to explore the application potentials of the composites and guide development of new nanocomposite preparation. In this study, different composites of graphene oxide and gold nanoparticles (AuNPs/GO) were obtained by varying the volumes of reducing agents used in the one-pot hydrothermal method.

View Article and Find Full Text PDF

Electrochemical water splitting is a promising method for the generation of "green hydrogen", a renewable and sustainable energy source. However, the complex, multistep synthesis processes, often involving hazardous or expensive chemicals, limit its broader adoption. Herein, a nitrate (NO) anion-intercalated nickel-iron-cerium mixed-metal (oxy)hydroxide heterostructure electrocatalyst is fabricated on nickel foam (NiFeCeOH@NF) via a simple electrodeposition method followed by cyclic voltammetry activation to enhance its surface properties.

View Article and Find Full Text PDF

Nano-confined Si@C composites with excellent lithium-ion storage performance derived from a POSS-based covalent framework and low-temperature reduction method.

Dalton Trans

January 2025

State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.

Silicon-based anode materials experience significant volume changes and low conductivity during the lithiation process, which severely hinders their successful application in lithium-ion batteries. Reducing the size of silicon particles and effectively combining them with carbon-based materials are considered the main strategies to enhance the lithium-ion storage performance of silicon-based anodes. In this study, we employed a "bottom-up" strategy to synthesize Si@C anode materials by cross-linking octa-aminopropyl polyhedral oligomeric silsesquioxane (NH-POSS) with terephthalaldehyde and subsequent high-temperature treatment and low-temperature liquid reduction.

View Article and Find Full Text PDF

Permeance-selectivity trade-offs are inherent to polymeric membranes. In fuel cells, thinner proton exchange membranes (PEMs) could enable higher proton conductance and increased power density with lower area-specific resistance (ASR), smaller ohmic losses, and lower ionomer cost. However, reducing thickness is accompanied by an increase in undesired species crossover harming performance and long-term efficiency.

View Article and Find Full Text PDF

Neurodegenerative diseases, characterized by the progressive deterioration of neuronal function and structure, pose significant global public health and economic challenges. Brain-Derived Neurotrophic Factor (BDNF), a key regulator of neuroplasticity and neuronal survival, has emerged as a critical biomarker for various neurodegenerative and psychiatric disorders, including Alzheimer's disease. Traditional diagnostic methods, such as Enzyme-Linked Immunosorbent Assay (ELISA) and electrochemiluminescence (ECL) assays, face limitations in terms of sensitivity, stability, reproducibility, and cost-effectiveness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!