High reliability is important for optimising quality and safety in healthcare organisations. Reliability efforts include interprofessional collaborative practice (IPCP) and Lean quality/process improvement strategies, which require skilful facilitation. Currently, no validated Lean facilitator assessment tool for interprofessional collaboration exists. This article describes the development and pilot evaluation of such a tool; the Interprofessional Lean Facilitator Assessment Scale (ILFAS), which measures both technical and 'soft' skills, which have not been measured in other instruments. The ILFAS was developed using methodologies and principles from Lean/Shingo, IPCP, metacognition research and Bloom's Taxonomy of Learning Domains. A panel of experts confirmed the initial face validity of the instrument. Researchers independently assessed five facilitators, during six Lean sessions. Analysis included quantitative evaluation of rater agreement. Overall inter-rater agreement of the assessment of facilitator performance was high (92%), and discrepancies in the agreement statistics were analysed. Face and content validity were further established, and usability was evaluated, through primary stakeholder post-pilot feedback, uncovering minor concerns, leading to tool revision. The ILFAS appears comprehensive in the assessment of facilitator knowledge, skills, abilities, and may be useful in the discrimination between facilitators of different skill levels. Further study is needed to explore instrument performance and validity.

Download full-text PDF

Source
http://dx.doi.org/10.1080/13561820.2017.1407300DOI Listing

Publication Analysis

Top Keywords

lean facilitator
12
facilitator assessment
12
interprofessional lean
8
assessment scale
8
tool interprofessional
8
assessment facilitator
8
lean
5
facilitator
5
assessment
5
development interprofessional
4

Similar Publications

The mesopores and macropores within porous carbon materials help increase the surface for the depostion of solid-state products, reduce the LiS film thickness, enhance electron and mass transport, and accelerate the reaction kinetics. However, an excessive amount of mesopores and macropores can lead to increased electrolyte consumption, particularly at high sulfur loadings, where excessive electrolyte usage hampers the enhancement of practical energy density in lithium-sulfur (Li-S) batteries. A rational pore structure can minimize the amount of electrolyte to fill the pores, thereby reducing electrolyte consumption while achieving rapid reaction kinetics and a high gravimetric energy density.

View Article and Find Full Text PDF

Trace Metal Impurities Induce Differences in Lithium-Sulfur Batteries.

ACS Nano

December 2024

Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.

Carbon nanotubes (CNTs) with exceptional conductivity have been widely adopted in lithium-sulfur (Li-S) batteries. While trace metal impurities in CNTs have demonstrated electrocatalytic activity in various catalytic processes, their influence on sulfur electrocatalysis in Li-S batteries has been largely overlooked. Herein, we reveal that the trace metal impurities content in CNTs significantly improves the specific capacity and cycling performance of Li-S batteries by analyzing both our own results and previous literature with CNTs as the sulfur hosts.

View Article and Find Full Text PDF

Identification of genetic loci enriched in obese or lean T2D cases in the Korean population.

Genes Genomics

December 2024

Department of Biomedical Science, Hallym University, Chuncheon, Gangwon State, 24252, Republic of Korea.

Background: Obesity causes many complex diseases including type 2 diabetes (T2D). Obesity increases the risk of T2D in Europeans, but there are many non-obese (lean) T2D patients in East Asia.

Objective: To discover genetic factors enriched in obese or lean T2D patients, we conducted a genome-wide association (GWA) analysis for T2D stratified by BMI in the Korean population.

View Article and Find Full Text PDF

Single-cell transcriptomic analysis and luteolin treatment reveal three adipogenic genes, including Aspn, Htra1 and Efemp1.

Biochim Biophys Acta Mol Cell Biol Lipids

December 2024

School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China. Electronic address:

A comparative transcriptomic analysis in adipose stem and progenitor cells (ASPCs) between obese and lean mice might facilitate the identification of novel adipogenic genes. Here, we compare transcriptomic differences in the ASPCs of subcutaneous adipose tissue (SAT) between the mice fed on a high-fat-diet (HFD) and the chow diet (CD)-fed mice by analyzing three independent single-cell RNA sequencing datasets. Six differential genes, including three up-regulated genes Aspn, Rrbp1, Fbln2 and three down-regulated genes Htra1, Plpp3, Efemp1, are identified and confirmed in HFD-fed mice.

View Article and Find Full Text PDF

Facile preparation of solid gelatin foams by a water-lean batch foaming process.

Int J Biol Macromol

December 2024

Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; Centre for Analysis, Testing, Evaluation & Reporting Services (CATERS), CSIR-Central Leather Research Institute (CSIR-CLRI), Adyar, Chennai 600020, Tamil Nadu, India.

Existing polystyrenic and polyolefinic packaging foams are non-biodegradable, and persist in the environment for hundreds of years. Gelatin foams are an interesting alternative, given their biodegradability, biocompatibility, solution-based processability, low cost, and non-toxicity. However, current methods for preparing gelatin foams, such as freeze-drying, microfluidic foaming, and batch foaming, are not suitable for high-volume production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!