A comparative study of the oral microbiome compositions of healthy postmenopausal, premenopausal, and prepubertal Nigerian females, using 16s rrna metagenomics methods.

Niger J Clin Pract

Department of Medical Laboratory Sciences, Faculty of Health Sciences and Technology, College of Health Sciences, Nnamdi Azikiwe University, Nnewi Campus, Anambra State, Nigeria.

Published: October 2017

Introduction: There is a paucity of information on the oral microbiome compositions of Nigerians, mostly due to lack of appropriate molecular techniques. In this pilot study, we sought to determine and characterize the oral bacterial compositions of "healthy" females.

Materials And Methods: Oral samples were collected from three randomly selected females aged 56, 28, and 8 years. DNA was extracted and 16S rRNA V4 region was amplified using custom-barcoded primers before sequencing with Illumina MiSeq platform. Quantitative Insights into Microbial Ecology pipeline was used for 16S rRNA recognition. Distribution of taxonomic categories at different levels of resolution was done using the ribosomal RNA similarities to entries in the REFseq protein database. Diversity score was calculated based on the inverse Simpson's index.

Results: The inverse Simpson's diversity index for the postmenopausal, premenopausal, and prepubertal was 7.74, 6.95, and 7.42 respectively. A total of 12 phyla, 70 genera, and 85 species were detected. Firmicutes followed by Proteobacteria, Actinobacteria, Bacteroidetes, and Fusobacteria dominated the oral microbiome of the subjects. Streptococcus thermophilus (33.19%) was the most abundance species in subject 1, while subject 2 was highly predominated by Haemophilus parainfluenzae (80.65%), and subject 3 was predominated by Haemophilus influenzae (23.05%).

Conclusion: The study has revealed that bacteria with varying diversities colonized the subjects and it highlighted the importance of metagenomics in deciphering the oral bacterial compositions from females of different age groups. More studies are needed using metagenomics approach, to appreciate these bacterial organisms that are associated with health and disease in our environment.

Download full-text PDF

Source
http://dx.doi.org/10.4103/njcp.njcp_32_17DOI Listing

Publication Analysis

Top Keywords

oral microbiome
12
16s rrna
12
microbiome compositions
8
postmenopausal premenopausal
8
premenopausal prepubertal
8
oral bacterial
8
bacterial compositions
8
inverse simpson's
8
predominated haemophilus
8
oral
6

Similar Publications

Psittaciformes kept as pets can serve as reservoirs of various microorganisms, many of which have zoonotic potential, including spp. In this study, the antifungal susceptibility profiles of 16 spp. isolated from the oral and cloacal cavities of 20 pet parrots were evaluated.

View Article and Find Full Text PDF

is a common opportunistic pathogen that causes gastrointestinal diseases in livestock and poultry. Our preliminary research has demonstrated that administering oral yeast-cell microcapsule (YCM)-mediated DNA vaccines can effectively stimulate mucosal immunity, thereby preventing the occurrence of gastrointestinal diseases. In this study, the α-toxin gene was first cloned and the H126G and C-terminal (C247-370) mutations were created.

View Article and Find Full Text PDF

: Cannabidiol (CBD) is an approved treatment for childhood epilepsies and a candidate treatment for several other CNS disorders. However, it has poor oral bioavailability. We investigated the effect of a novel lipid formulation on its absorption in humans and on its tissue distribution in mice.

View Article and Find Full Text PDF

Background/objectives: Functional probiotics, particularly subsp. CKDB001, have shown potential as a therapeutic option for metabolic dysfunction-associated steatotic liver disease (MASLD). However, their effects have not been confirmed in in vivo systems.

View Article and Find Full Text PDF

The Effect of Oral Care Product Ingredients on Oral Pathogenic Bacteria Transcriptomics Through RNA-Seq.

Microorganisms

December 2024

Oral Care Product Development, The Procter & Gamble Company, Cincinnati, OH 45202, USA.

Various ingredients are utilized to inhibit the growth of harmful bacteria associated with cavities, gum disease, and bad breath. However, the precise mechanisms by which these ingredients affect the oral microbiome have not been fully understood at the molecular level. To elucidate the molecular mechanisms, a high-throughput bacterial transcriptomics study was conducted, and the gene expression profiles of six common oral bacteria, including two Gram-positive bacteria (, ) and four Gram-negative bacteria (, , , and ), were analyzed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!