Controlling quantum critical phenomena in strongly correlated electron systems, which emerge in the neighborhood of a quantum phase transition, is a major challenge in modern condensed matter physics. Quantum critical phenomena are generated from the delicate balance between long-range order and its quantum fluctuation. So far, the nature of quantum phase transitions has been investigated by changing a limited number of external parameters such as pressure and magnetic field. We propose a new approach for investigating quantum criticality by changing the strength of quantum fluctuation that is controlled by the dimensional crossover in metallic quantum well (QW) structures of strongly correlated oxides. With reducing layer thickness to the critical thickness of metal-insulator transition, crossover from a Fermi liquid to a non-Fermi liquid has clearly been observed in the metallic QW of SrVO by in situ angle-resolved photoemission spectroscopy. Non-Fermi liquid behavior with the critical exponent α = 1 is found to emerge in the two-dimensional limit of the metallic QW states, indicating that a quantum critical point exists in the neighborhood of the thickness-dependent Mott transition. These results suggest that artificial QW structures provide a unique platform for investigating novel quantum phenomena in strongly correlated oxides in a controllable fashion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5709408 | PMC |
http://dx.doi.org/10.1038/s41598-017-16666-x | DOI Listing |
Nanoscale
January 2025
Transport at Nanoscale Interfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland.
Magic-angle twisted bilayer graphene (TBLG) has emerged as a versatile platform to explore correlated electron phases driven primarily by low-energy flat bands in moiré superlattices. While techniques for controlling the twist angle between graphene layers have spurred rapid experimental progress, understanding the effects of doping inhomogeneity on electronic transport in correlated electron systems remains challenging. In this work, we investigate the interplay of confinement and doping inhomogeneity on the electrical transport properties of TBLG by leveraging device dimensions and twist angles.
View Article and Find Full Text PDFNatl Sci Rev
January 2025
Division of Advanced Materials Engineering, College of Engineering, Research Center for Advanced Materials Development (RCAMD), Jeonbuk National University (JBNU), Jeonju 54896, South Korea.
Ever-increasing demand for efficient optoelectronic devices with a small-footprinted on-chip light emitting diode has driven their expansion in self-emissive displays, from micro-electronic displays to large video walls. InGaN nanowires, with features like high electron mobility, tunable emission wavelengths, durability under high current densities, compact size, self-emission, long lifespan, low-power consumption, fast response, and impressive brightness, are emerging as the choice of micro-light emitting diodes (µLEDs). However, challenges persist in achieving high crystal quality and lattice-matching heterostructures due to composition tuning and bandgap issues on substrates with differing crystal structures and high lattice mismatches.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
School of Physics, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad 500046, India.
The Josephson diode effect (JDE), characterized by asymmetric critical currents in a Josephson junction, has drawn considerable attention in the field of condensed matter physics. We investigate the conditions under which JDE can manifest in a one-dimensional Josephson junction composed of a spin-orbit-coupled quantum wire with an applied Zeeman field, connected between two superconductors (SCs). Our study reveals that while spin-orbit coupling (SOC) and a Zeeman field in the quantum wire are not sufficient to induce JDE when the SCs are purely singlet, introduction of triplet pairing in the SCs leads to the emergence of JDE.
View Article and Find Full Text PDFNat Commun
January 2025
Institute for Quantum Science and Technology, College of Science, National University of Defense Technology, Changsha, China.
An ancient and counterintuitive phenomenon known as the Mpemba effect (water can cool faster when initially heated up) showcases the critical role of initial conditions in relaxation processes. How to realize and utilize this effect for speeding up relaxation is an important but challenging task in purely quantum system till now. Here, we experimentally study the strong Mpemba effect in a single trapped ion system in which an exponentially accelerated relaxation in time is observed by preparing an optimal quantum initial state with no excitation of the slowest decaying mode.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce di Sotto, 8, 06123 Perugia, Italy.
Photoswitches are widely investigated molecules because upon exposure to selected light irradiation, they are able to undergo structural, and hence optical, changes. To fully exploit their responsiveness to irradiation, the quantum efficiency of the forward and back reactions is a fundamental parameter, whose accurate determination is critical. In this work, the spectral evolution of a biomimetic switch, which undergoes / photoinduced isomerization, is spectrophotometrically examined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!