Bacteria possess transcription factors whose DNA-binding activity is altered upon binding to specific metals, but metal binding is not specific in vitro. Here we show that tight regulation of buffered intracellular metal concentrations is a prerequisite for metal specificity of Zur, ZntR, RcnR and FrmR in Salmonella Typhimurium. In cells, at non-inhibitory elevated concentrations, Zur and ZntR, only respond to Zn(II), RcnR to cobalt and FrmR to formaldehyde. However, in vitro all these sensors bind non-cognate metals, which alters DNA binding. We model the responses of these sensors to intracellular-buffered concentrations of Co(II) and Zn(II) based upon determined abundances, metal affinities and DNA affinities of each apo- and metalated sensor. The cognate sensors are modelled to respond at the lowest concentrations of their cognate metal, explaining specificity. However, other sensors are modelled to respond at concentrations only slightly higher, and cobalt or Zn(II) shock triggers mal-responses that match these predictions. Thus, perfect metal specificity is fine-tuned to a narrow range of buffered intracellular metal concentrations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5709419PMC
http://dx.doi.org/10.1038/s41467-017-02085-zDOI Listing

Publication Analysis

Top Keywords

metal concentrations
12
metal
8
binding specific
8
buffered intracellular
8
intracellular metal
8
metal specificity
8
zur zntr
8
sensors modelled
8
modelled respond
8
concentrations
7

Similar Publications

Smartphone-Assisted Fluorescence Determination of Inorganic Phosphorus Using a Samarium Metal-Organic Framework.

Inorg Chem

January 2025

Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China.

Inorganic phosphori are widely used in food, whose quantitative detection method is of significance. This work presents a Sm-DDB (HDDB = 1,3-di(3',5'-dicarboxylphenyl)benzene), which acts as a ratiometric fluorescence sensor to monitor PO, HPO, and (PO) with high sensitivity. The determination factors of pH, MOF dosage, and fluorescence response time are optimized as 7.

View Article and Find Full Text PDF

Glutathione-Responsive Metal-Organic-Framework-Derived MnO/(A/R)TiO Nanoparticles for Enhanced Synergistic Sonodynamic/Chemodynamic/Immunotherapy.

ACS Nano

January 2025

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.

Despite the potential of sonodynamic therapy (SDT) in treating malignant tumors, the lack of effective sonosensitizers has limited its clinical implementation. In this study, we explored the relationship between the heteroatom doping concentration in metal-organic frameworks and interface formation after pyrolysis by regulating the addition of manganese sources and successfully derived Z-scheme heterojunctions MnO/(A/R)TiO (MTO) in situ from MIL-125-NH (Ti/Mn). The electron transfer pathway introduced by interfacial contact promoted carrier separation and greatly preserved the effective redox components, significantly influencing the performance of reactive oxygen species generation.

View Article and Find Full Text PDF

Theory of giant magnetoelastic effect in soft systems.

Sci Adv

January 2025

Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.

Having been predominantly observed in rigid metal and metal alloys since 1865, the magnetoelastic effect was recently experimentally discovered in a soft matter system and used as a new working mechanism for energy and health care applications. Here, a theoretical framework is presented and proven to be universally accurate and robust in interpreting the giant magnetoelastic effect across soft systems subjected to various deformation modes, micromagnet concentrations, magnetization profiles, and geometric structures. The theory uncovers substantial, unique magnetoelastic phenomena in soft systems, including the magnetic pole reversal under localized compression.

View Article and Find Full Text PDF

A smartphone-integrated colorimetric sensor is introduced for the rapid detection of phenolic compounds, including 8-hydroquinone (HQ), p-nitrophenol (NP), and catechol (CC). This sensor relies on the peroxidase-mimicking activity of aspartate-based metal-organic frameworks (MOFs) such as Cu-Asp, Ce-Asp, and Cu/Ce-Asp. These MOFs facilitate the oxidation of a colorless substrate, 3,3',5,5'-tetramethylbenzidine (TMB), by reactive oxygen species (ROS) derived from hydrogen peroxide (HO), resulting in the formation of blue-colored oxidized TMB (ox-TMB).

View Article and Find Full Text PDF

Exposure to Lead, Cadmium, Mercury and Arsenic Among Asian and Non-Asian Children and Adolescents in the United States: NHANES 2015-2018.

J Immigr Minor Health

January 2025

Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, PO Box 951772, Los Angeles, CA, 90095-1772, USA.

Higher concentrations of heavy metals were reported mainly among adult Asian persons compared to other racial/ethnic groups in earlier NHANES cycles' studies. We aimed to examine concentrations of metals among Asian children/adolescents compared to children/adolescents identifying with other racial/ethnic groups, considering socio-demographic factors and potential mediation by fish/shellfish consumption. Using NHANES data (2015-2018), 5293 participants (1-19 years) with blood/urinary measurements of lead, cadmium, mercury and arsenic were included.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!