Molecular Ultrasound Imaging of Junctional Adhesion Molecule A Depicts Acute Alterations in Blood Flow and Early Endothelial Dysregulation.

Arterioscler Thromb Vasc Biol

From the Institute for Molecular Cardiovascular Research (IMCAR) (A.C., Z.W., M.S., S.A.-R., M.v.Z., E.A.L.), and Institute for Experimental Molecular Imaging (ExMI) (A.C., Z.W., A.R., T.L., F.K.), University Hospital Aachen, RWTH Aachen, Germany; Victor Babes National Institute of Pathology, Bucharest, Romania (A.C.); AYOXXA Biosystems GmbH, Cologne, Germany (O.G.); Department of Targeted Therapeutics, University of Twente, Enschede, The Netherlands (T.L.); Department of Genetics and Molecular Cell Biology, School for Oncology and Developmental Biology (GROW), Maastricht University, The Netherlands (M.v.Z., R.R.K.); Department of Biochemistry, School for Cardiovascular Diseases (CARIM), Maastricht University, The Netherlands (M.v.Z., C.W.); German Centre for Cardiovascular Research, partner site Munich Heart Alliance (DZHK), Germany (C.W.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, Munich, Germany (C.W.); and Human Genetic Laboratory, University for Medicine and Pharmacy, Craiova, Romania (E.A.L.).

Published: January 2018

Objective: The junctional adhesion molecule A (JAM-A) is physiologically located in interendothelial tight junctions and focally redistributes to the luminal surface of blood vessels under abnormal shear and flow conditions accompanying atherosclerotic lesion development. Therefore, JAM-A was evaluated as a target for molecularly targeted ultrasound imaging of transient endothelial dysfunction under acute blood flow variations.

Approach And Results: Flow-dependent endothelial dysfunction was induced in apolipoprotein E-deficient mice (n=43) by carotid partial ligation. JAM-A expression was investigated by molecular ultrasound using antibody-targeted poly(n-butyl cyanoacrylate) microbubbles and validated with immunofluorescence. Flow disturbance and arterial remodeling were assessed using functional ultrasound. Partial ligation led to an immediate drop in perfusion at the ligated side and a direct compensatory increase at the contralateral side. This was accompanied by a strongly increased JAM-A expression and JAM-A-targeted microbubbles binding at the partially ligated side and by a moderate and temporary increase in the contralateral artery (≈14× [<0.001] and ≈5× [<0.001] higher than control, respectively), both peaking after 2 weeks. Subsequently, although JAM-A expression and JAM-A-targeted microbubbles binding persisted at a higher level at the partially ligated side, it completely normalized within 4 weeks at the contralateral side.

Conclusions: Temporary blood flow variations induce endothelial rearrangement of JAM-A, which can be visualized using JAM-A-targeted microbubbles. Thus, JAM-A may be considered as a marker of acute endothelial activation and dysfunction. Its imaging may facilitate the early detection of cardiovascular risk areas, and it enables the therapeutic prevention of their progression toward an irreversible pathological state.

Download full-text PDF

Source
http://dx.doi.org/10.1161/ATVBAHA.117.309503DOI Listing

Publication Analysis

Top Keywords

molecular ultrasound
8
ultrasound imaging
8
junctional adhesion
8
adhesion molecule
8
blood flow
8
endothelial dysfunction
8
partial ligation
8
jam-a expression
8
ligated side
8
increase contralateral
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!