Phosphate Kinetic Models in Hemodialysis: A Systematic Review.

Am J Kidney Dis

Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.

Published: January 2018

Background: Understanding phosphate kinetics in dialysis patients is important for the prevention of hyperphosphatemia and related complications. One approach to gain new insights into phosphate behavior is physiologic modeling. Various models that describe and quantify intra- and/or interdialytic phosphate kinetics have been proposed, but there is a dearth of comprehensive comparisons of the available models. The objective of this analysis was to provide a systematic review of existing published models of phosphate metabolism in the setting of maintenance hemodialysis therapy.

Study Design: Systematic review.

Setting & Population: Hemodialysis patients.

Selection Criteria For Studies: Studies published in peer-reviewed journals in English about phosphate kinetic modeling in the setting of hemodialysis therapy.

Predictor: Modeling equations from specific reviewed studies.

Outcomes: Changes in plasma phosphate or serum phosphate concentrations.

Results: Of 1,964 nonduplicate studies evaluated, 11 were included, comprising 9 different phosphate models with 1-, 2-, 3-, or 4-compartment assumptions. Between 2 and 11 model parameters were included in the models studied. Quality scores of the studies using the Newcastle-Ottawa Scale ranged from 2 to 11 (scale, 0-14). 2 studies were considered low quality, 6 were considered medium quality, and 3 were considered high quality.

Limitations: Only English-language studies were included.

Conclusions: Many parameters known to influence phosphate balance are not included in existing phosphate models that do not fully reflect the physiology of phosphate metabolism in the setting of hemodialysis. Moreover, models have not been sufficiently validated for their use as a tool to simulate phosphate kinetics in hemodialysis therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1053/j.ajkd.2017.07.016DOI Listing

Publication Analysis

Top Keywords

phosphate
13
phosphate kinetics
12
phosphate kinetic
8
models
8
phosphate metabolism
8
metabolism setting
8
setting hemodialysis
8
phosphate models
8
quality considered
8
hemodialysis
6

Similar Publications

Objectives: To identify if chemotherapeutic drugs in the CHOP-based protocol led to an increase in renal parameters in dogs with lymphoma during therapy and investigate whether factors such as prednisolone use or age affected this result.

Methods: Data were obtained retrospectively from private referral practice records of dogs diagnosed with lymphoma receiving a CHOP-based chemotherapy protocol between 2015 and 2019. Dogs included received a CHOP-based protocol as their first treatment, received four full cycles and were in remission at the end of the protocol.

View Article and Find Full Text PDF

CASC8 activates the pentose phosphate pathway to inhibit disulfidptosis in pancreatic ductal adenocarcinoma though the c-Myc-GLUT1 axis.

J Exp Clin Cancer Res

January 2025

Department of Hepato-Biliary-Pancreatic Surgery, General Surgery, Huadong Hospital, Fudan University, Shanghai, 200040, PR China.

Purpose: Glucose starvation induces the accumulation of disulfides and F-actin collapse in cells with high expression of SLC7A11, a phenomenon termed disulfidptosis. This study aimed to confirm the existence of disulfidptosis in pancreatic ductal adenocarcinoma (PDAC) and elucidate the role of Cancer Susceptibility 8 (CASC8) in this process.

Methods: The existence of disulfidptosis in PDAC was assessed using flow cytometry and F-actin staining.

View Article and Find Full Text PDF

Clarithromycin, a common antibiotic found in domestic wastewater, persists even after treatment and can transfer to soils when treated wastewater (TWW) is used for irrigation. This residual antibiotic may exert selection pressure, promoting the spread of antibiotic resistance. While Predicted No Effect Concentrations (PNECs) are used in liquid media to predict resistance risks, PNEC values for soils, especially for clarithromycin, are lacking.

View Article and Find Full Text PDF

To date, it has been regarded as one of the most challenging issues to construct novel adsorbents possessing excellent adsorption performance toward heavy metals including copper ions (Cu(II)). Especially, it is controversy about the structural characteristics of chitosan-based adsorbents adsorbed with Cu(II) ions, which could function as new adsorbents. In this study, we adopt a freeze-drying process to synthesize honeycomb-like chitosan hydrogel beads crosslinked with citric acid (cCHBs), further characterize the microstructures of cCHBs and eventually reveal the thermodynamics equations for the removal of target Cu(II).

View Article and Find Full Text PDF

With high microporosity, good dispersibility, excellent specific surface area and large content surface functional group, hydrochar demonstrates significant advantages and strong affinity towards pollutants in water. Modification method plays a significant role for anion adsorption by modified hydrochar, layered double hydroxide (LDH) modified hydrocarbons (Mg/Al-LDH@HC-HCl) have been synthesized through a one-step hydrothermal approach and activated with hydrochloric acid in this paper. The physical and chemical characteristics of the hydrochar, both before and after modification, are analyzed using BET, SEM-EDS, TEM, XRD, FTIR, and XPS to explore the phosphate adsorption mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!