The process of parturition is poorly understood, but the cervix clearly plays a key role. Because of this, recent research efforts have been directed at objective quantification of cervical remodeling. Investigation has focused on two basic areas: (1) quantification of tissue deformability and (2) presence, orientation, and/or concentration of microstructural components (e.g. collagen). Methods to quantify tissue deformability include strain elastography and shear wave elasticity imaging (SWEI). Methods to describe tissue microstructure include attenuation and backscatter. A single parameter is unlikely to describe the complexities of cervical remodeling, but combining related parameters should improve accuracy of cervical evaluation. This chapter reviews options for cervical tissue characterization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6542287 | PMC |
http://dx.doi.org/10.1053/j.semperi.2017.08.006 | DOI Listing |
J Neurosurg
January 2025
1Department of Bioengineering, George Mason University, Fairfax, Virginia.
Objective: The complex mix of factors, including hemodynamic forces and wall remodeling mechanisms, that drive intracranial aneurysm growth is unclear. This study focuses on the specific regions within aneurysm walls where growth occurs and their relationship to the prevalent hemodynamic conditions to reveal critical mechanisms leading to enlargement.
Methods: The authors examined hemodynamic models of 67 longitudinally followed aneurysms, identifying 88 growth regions.
J Immunother Cancer
January 2025
Route de la Corniche 3B, Novigenix SA, 1066, Epalinges, Switzerland
Background: More efficient therapeutic options for non-small cell lung cancer (NSCLC) are needed as the survival at 5 years of metastatic disease is near zero. In this regard, we used a preclinical model of metastatic lung adenocarcinoma (SV2-OVA) to assess the safety and efficacy of novel radio-immunotherapy combining hypofractionated radiotherapy (HRT) with muPD1-IL2v immunocytokine and muFAP-CD40 bispecific antibody.
Methods: We evaluated the changes in the lung immune microenvironment at multiple timepoints following combination therapies and investigated their underlying antitumor mechanisms.
Oral Dis
January 2025
Bahrain Defence Force Royal Medical Services, Riffa, Bahrain.
Objective: Tumour-associated macrophages (TAMs) are crucial in the progression and treatment response of oral squamous cell carcinoma (OSCC). TAMs infiltrate OSCC, adopting an M2-like phenotype that promotes tumour growth, metastasis and immune suppression. The current narrative review explored the roles of TAMs in OSCC, focusing on their impact on the tumour microenvironment, invasion, metastasis, angiogenesis, immunosuppression and potential therapeutic targeting.
View Article and Find Full Text PDFLupus Sci Med
January 2025
Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
Objective: Osteoporosis is a common comorbidity in patients with SLE, and bone loss in patients with SLE has a multifactorial aetiology. This study aimed to evaluate the therapeutic efficacy of denosumab in patients with SLE with osteoporosis and to analyse the factors influencing therapeutic efficacy.
Methods: A total of 166 patients with SLE with osteoporosis who initiated denosumab between January 2016 and December 2023 were included.
Arch Gynecol Obstet
January 2025
Department of Pathology, Instituto Português de Oncologia do Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.
Introduction: Preterm birth remains a global health challenge with significant perinatal morbidity and mortality rates. Despite extensive research, the underlying mechanisms triggering preterm birth remain elusive, needing a deeper understanding of cervical cellular remodelling processes.
Purpose: This study aims to elucidate the cellular mechanisms underlying cervical remodelling in spontaneous preterm labour (PTL) compared to term labour (TL), focusing on the roles of inflammatory cells and fibroblasts.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!