Aim Of The Study: Thiopurines are effective drugs in treating neuromyelitis optica spectrum disorders and other diseases. Thiopurines' toxicity is mainly imputed to thiopurine S-methyltransferase activity. In Chinese population, the most common and important variation of thiopurine S-methyltransferase is TPMT*3C (rs1142345). This study aims to reveal the association between thiopurine S-methyltransferase activity and genetic polymorphisms of thiopurine S-methyltransferase in patients with neuromyelitis optica spectrum disorders in China.

Material And Methods: A liquid chromatography tandem mass/mass method was used to evaluate the thiopurine S-methyltransferase activity by using 6-mercapthioprine as the substrate in human erythrocyte haemolysate via 1 h incubation at 37 °C to form its methylated product 6-methylmercaptopurine. The amount of 6-methylmercaptopurine was adjusted by haematocrit and normalized to 8 × 10 erythrocytes. The selected polymorphisms of thiopurine S-methyltransferase were identified using MassARRAY system (Sequenom) and multiple SNaPshot technique.

Results: In 69 patients with neuromyelitis optica spectrum disorders, thiopurine S-methyltransferase activity was 80.29-154.53 (127.51 ± 16.83) pmol/h/8 × 10 erythrocytes. TPMT*3C (rs1142345) was associated with lower thiopurine S-methyltransferase activity (BETA = -25.37, P = 0.011). Other selected variants were not associated with thiopurine S-methyltransferase activity.

Conclusions: TPMT*3C affects TPMT activity in Chinese patients with neuromyelitis optica spectrum disorders. Further studies are warranted to confirm the results.

Abbreviations: TPRs = thiopurines; NMOSD = neuromyelitis optica spectrum disorders; TPMT = thiopurine S-methyltransferase; LC-MS/MS = liquid chromatography tandem mass/mass; 6-MMP = 6-methylmercaptopurine; IS = internal standard; SNP = single nucleotide polymorphism; MAF = minor allele frequency; HWE = Hardy-Weinberg equilibrium; BETA = regression coefficients; UTR-3 = untranslated region 3.

Download full-text PDF

Source
http://dx.doi.org/10.1080/00207454.2017.1401621DOI Listing

Publication Analysis

Top Keywords

thiopurine s-methyltransferase
44
s-methyltransferase activity
24
neuromyelitis optica
24
optica spectrum
24
spectrum disorders
24
patients neuromyelitis
16
thiopurine
11
s-methyltransferase
11
activity chinese
8
tpmt*3c rs1142345
8

Similar Publications

Background: Thiopurine methyltransferase (TPMT) plays a crucial role in the detoxification of thiopurine drugs, including the antimetabolites azathioprine and 6-mercaptopurine (6-MP) used to treat autoimmune diseases and various cancers. These drugs interfere with DNA synthesis by inhibiting the production of purine-containing nucleotides, leading to the death of rapidly dividing cells. TPMT inactivates thiopurine drugs by methylating at the thiol group.

View Article and Find Full Text PDF

Nudix hydrolase 15 (NUDT15) deficiency is strongly associated with thiopurine-induced myelosuppression. Currently, testing for NUDT15 deficiency is based on the genotyping of the most frequent and clinically characterized no-function variants, that is, *2, *3 and *9. The Hispanic/Latino-predominant variant NUDT15 *4 (p.

View Article and Find Full Text PDF

Introduction: Thiopurine drugs are metabolized by thiopurine methyltransferase (TPMT) and low TPMT activity can result in severe adverse drug reactions. Therefore, TPMT testing is recommended for individuals receiving thiopurines to reduce the risk of toxicity.

Objectives: The objectives of this study were to assess the rate of TPMT testing among individuals receiving thiopurines and explore factors associated with undergoing TPMT testing in Australia.

View Article and Find Full Text PDF
Article Synopsis
  • Azathioprine (AZA), commonly used for autoimmune disorders and organ transplants, shows potential for modern applications in viral, rheumatic, and skin diseases.
  • Advances in pharmacogenomics and nanotechnology may enhance AZA's effectiveness while reducing side effects, particularly by utilizing the active metabolites 6-mercaptopurine and 6-thioguanine.
  • The study suggests that personalized medicine approaches, including genetic testing and innovative drug delivery systems, can improve treatment outcomes for conditions like systemic lupus erythematosus and psoriasis.
View Article and Find Full Text PDF

Budget impact analysis of TPMT and NUDT15 pharmacogenomic testing for 6-mercaptopurine in pediatric acute lymphoblastic leukemia patients.

Pharmacogenet Genomics

February 2025

Division of Neonatology, Department of Pediatrics, Fetal and Neonatal Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.

Background: Pharmacogenomic testing identifies gene polymorphisms impacting drug metabolism, aiding in optimizing treatment efficacy and minimizing toxicity, thus potentially reducing healthcare utilization. 6-Mercaptopurine metabolism is affected by thiopurine methyltransferase ( TPMT ) and nudix hydrolase 15 ( NUDT15 ) polymorphisms. We sought to estimate the budget impact of preemptive pharmacogenomic testing for these genes in pediatric acute lymphoblastic leukemia (ALL) patients from an institutional perspective.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!