The radioresistance of hepatocellular carcinoma (HCC) cells is a critical obstacle for effectively applying radiotherapy (RT) in HCC treatment. NF-κB, an important transcription factor, can influence critical cell fate decisions by promoting cell survival or anti-apoptosis in response to cell-stress, chemotherapies or ionizing radiation (IR). A20, also named as tumor necrosis factor α induced protein 3 (), is a dominant negative regulator of NF-κB pathway and its functions in HCC are largely unknown. The present work aimed to reveal the role of A20 plays in affecting the radiosensitivity of HCC cells. Higher expression of A20 was detected in hepatic non-tumor cell line or clinical specimens compared with HCC cell lines or clinical specimens. A20 decreased the expression of proteins mediating cellular stress/injury response or epithelial-mesenchymal transition (EMT) process. Overexpression of A20 adenovirus enhanced the effect of Co-γ ionizing radiation (IR) on HCC cells' injury, G2/M arrest or DNA double strands break (DSB). Moreover, A20 also enhanced the or survival inhibiting of HCC cells induced by IR. These results reveal the roles of A20 in HCC radiosensitization and overexpression of A20 would be a novel strategy for HCC radiotherapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5696247PMC
http://dx.doi.org/10.18632/oncotarget.21860DOI Listing

Publication Analysis

Top Keywords

ionizing radiation
12
hcc cells
12
a20
9
hcc
9
hepatocellular carcinoma
8
co-γ ionizing
8
clinical specimens
8
overexpression a20
8
a20 enhances
4
enhances radiosensitivity
4

Similar Publications

Potential benefits of social media in educating healthcare professionals and students on medical imaging with ionizing radiation: A scoping review.

Radiography (Lond)

January 2025

H&TRC, Health & Technology Research Center, Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, Parque das Nações, Lisboa, 1990-096, Portugal; CICPSI, Faculdade de Psicologia, Universidade de Lisboa, Alameda da Universidade, Lisboa, 1649-013, Portugal.

Introduction: Advancements in medical imaging with ionizing radiation have significantly transformed the field and enhanced the education and training of medical professionals. A notable development in this educational landscape is the use of social media, which engages millions of users worldwide. This scoping review aims to explore the potential of social media as an educational tool for healthcare professionals and students in medical imaging with ionizing radiation, highlighting its benefits and disadvantages.

View Article and Find Full Text PDF

Case: A 14-year-old male athlete presented with a 9-month history of low back pain, worse with hyperextension. Nonoperative management for bilateral L4 spondylolysis had been unsuccessful. The patient underwent a novel magnetic resonance imaging (MRI) that generated a synthetic computed tomography (sCT).

View Article and Find Full Text PDF
Article Synopsis
  • This study investigates the biological changes in rabbit corneas caused by two light-activated corneal stiffening methods: riboflavin with UVA and WST11 with NIR.
  • Differentially expressed proteins were identified following treatments, showing RF-D/UVA affected cell metabolism and keratocyte differentiation, while WST-D/NIR influenced extracellular matrix regulation.
  • The findings reveal a metabolic shift towards glycolysis in RF-D/UVA treated corneas compared to normal respiration in WST-D/NIR treated corneas, highlighting the distinct biological effects of each treatment.
View Article and Find Full Text PDF

Background: Exposure to ionizing radiation is inevitable due to its extensive use in industrial and medical applications. The search for effective and safe natural therapeutic agents as alternatives to chemical drugs is crucial to mitigate their side effects. This study aimed to evaluate the effects of citicoline as a standalone treatment or in combination with the anti-hepatotoxic drug silymarin in protecting against liver injury caused by γ-radiation in rats.

View Article and Find Full Text PDF

The effects of age and other individual factors on radiation induced ESR signals from fingernails.

Front Public Health

January 2025

Department of Radiation Biophysics, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, Hiroshima, Japan.

Biodosimetry is crucial for assessing ionizing radiation exposure to guide medical responses. Electron spin resonance (ESR) spectroscopy using fingernails can be effectively used for both occupational and public dose assessments in radiological accidents because of their accessibility and ability to retain stable radiation-induced free radicals. However, despite two decades of research, challenges remain in achieving accurate fingernail dosimetry, mainly owing to the variation in ESR signals among individuals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!