The aim of this study was to establish nomograms, based on significant clinicopathologic parameters, for predicting the overall survival (OS) and the cancer-specific survival (CSS) of patients with classical Hodgkin lymphoma (CHL). The data of 43,330 CHL patients, diagnosed between 1983 and 2014, were obtainedfrom the database of the Surveillance, Epidemiology, and End Results (SEER) program. These patients were randomly divided into training (n = 30,339) and validation (n = 12,991) cohorts. The Kaplan-Meier method and Cox proportional hazards regression model were used to evaluate the prognostic effects of multiple clinicopathologic parameters on survival. Significant prognostic factors were combined to build nomograms. The predictive performance of nomograms was evaluated using the index of concordance (C-index) and calibration curves. In the training cohort, on univariate and multivariate analyses, age at diagnosis, gender, race, Ann Arbor stage, and histological type significantly correlated with the survival outcomes. These characteristics were used to establish nomograms. The nomograms showed good accuracy in predicting 1-, 5-, and 10-year OS and CSS, with a C-index of 0.794 (95% confidence interval [CI], 0.789-0.799) for OS and 0.760 (95% CI, 0.753-0.767) for CSS. In the validation cohort, the C-index for nomogram-based predictions was 0.787 (95% CI, 0.779-0.795) for OS and 0.769 (95% CI, 0.758-0.780) for CSS. All calibration curves revealed excellent consistency between predicted and actual survival. In summary, novel nomograms were established and validated to predict OS and CSS for patients with CHL. These new prognostic models could aid in improved prediction of survival outcomes leading to reasonable treatment recommendations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5696237 | PMC |
http://dx.doi.org/10.18632/oncotarget.21722 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!