β2GPI exerts an anti-obesity effect in female mice by inhibiting lipogenesis and promoting lipolysis.

Oncotarget

Department of Infectious Diseases, Immunology and Sexual Health and Department of Medicine, St George Hospital, University of New South Wales, New South Wales, Sydney, Australia.

Published: November 2017

In humans, males compared to females have increased visceral adipose tissue which contributes to their increased risk of early death. Mice display analogous sexual diamorphism whereby females are protected from weight gain when fed a high fat diet compared to males. A role has recently been reported for β-glycoprotein I, an abundant plasma protein, in healthy leanness in humans. In this study we investigated the role of β-glycoprotein I in fat metabolism in male and female mice fed a normal chow or high fat diet. We have made a number of novel insights into factors contributing to sexual diamorphism in obesity. Female wild type mice are protected from obesity when fed a high fat diet due to down regulation of lipogenesis in the visceral adipose tissues. This down regulation is due to β-glycoprotein I as female mice deficient in this protein have increased levels of lipogenesis enzymes in their visceral adipose tissues with an accompanying increase in weight compared to female wild type controls. Understanding female specific regulators of obesity may lead to sex specific anti-obesity therapies to address this major health problem.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5696212PMC
http://dx.doi.org/10.18632/oncotarget.21536DOI Listing

Publication Analysis

Top Keywords

female mice
12
visceral adipose
12
high fat
12
fat diet
12
sexual diamorphism
8
fed high
8
female wild
8
wild type
8
adipose tissues
8
female
6

Similar Publications

Objectives: KH-type splicing regulatory protein (KHSRP) is an RNA-binding protein involved in several cellular processes, including nuclear splicing, mRNA localization, and cytoplasmic degradation. While KHSRP's role has been studied in other cancers, its specific involvement in gastric cancer remains poorly understood. This study aims to explore KHSRP expression in gastric cancer and its potential effects on tumor progression and immune response.

View Article and Find Full Text PDF

Circ-PAN3 facilitates hepatocellular carcinoma growth via sponging miR-153 and upregulating cyclin D1.

Oncol Res

January 2025

Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.

Background: Circular RNAs (circRNAs) play a pivotal role in the development and advancement of various cancer types. However, the involvement of circ-PAN3 in hepatocellular carcinoma (HCC) is not well understood. To shed light on this, we conducted a comprehensive study through biochemistry, cell biology, molecular biology, and bioinformatics techniques to investigate the role of circ-PAN3 and its associated pathway in the progression of HCC.

View Article and Find Full Text PDF

Background: Clear cell renal carcinoma (ccRCC), the leading histological subtype of RCC, lacks any targeted therapy options. Although some studies have shown that early growth response factor 1 (EGR1) has a significant role in cancer development and progression, its role and underlying mechanisms in ccRCC remain poorly understood.

Methods: The Cancer Genome Atlas (TCGA) database was utilized to examine the expression of EGR1 in ccRCC.

View Article and Find Full Text PDF

Background: PLK3, which played an important role in cell cycle progression and stress response, was identified as highly expressed in various carcinomas. However, the functions, molecular characteristics, and prognostic value of PLK3 in glioma remained unexplored.

Methods: We analyzed PLK3 expression in glioma samples from multiple databases.

View Article and Find Full Text PDF

Background: Patients with gastric cancer (GC) are prone to lymph node metastasis (LNM), which is an important factor for recurrence and poor prognosis of GC. Nowadays, more and more studies have confirmed that exosomes can participate in tumor lymphangiogenesis. An in-depth exploration of the pathological mechanism in the process of LNM in GC may provide effective targets and improve the diagnosis and treatment effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!