We report the internal field nuclear magnetic resonance (IFNMR) and Mössbauer spectroscopy study of Li-Zn ferrites at RT. The results were supported by the IFNMR data measured at 77 K. As Zn concentration increases the IFNMR echo amplitude decreases and below certain Zn concentration no signal was detected. At RT the echo amplitude vanishes at a lower Zn concentration, whereas at 77 K, the echo amplitude does not vanish completely (except for pure Zn-ferrite). However, in Mössbauer spectroscopy at RT, we have observed magnetically ordered state of all the Li-Zn ferrite samples. This discrepancy could be related to the difference between the time scale of detection of the spins by Mössbauer spectroscopy (10-10 s) and NMR spectroscopy (10 s). Hence, sensitivity of zero-field NMR depends on the magnetic hyperfine field, temperature and abundance of the magnetic cations at the lattice of the spinel ferrites. We have demonstrated that the 'two-equal-pulses' sequence leads to higher echo signal than the spin echo pulse sequence due to the presence of distribution of internal magnetic fields throughout the material. We obtained a limiting value for the fraction of spins needed to produce an echo signal at a particular temperature and at a particular site of the Li-Zn ferrite spinels that can be sensitively detected by pulsed IFNMR technique.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmr.2017.11.012DOI Listing

Publication Analysis

Top Keywords

mössbauer spectroscopy
16
echo amplitude
12
internal field
8
field nuclear
8
nuclear magnetic
8
magnetic resonance
8
spectroscopy study
8
study li-zn
8
li-zn ferrites
8
li-zn ferrite
8

Similar Publications

Ion mobility spectrometry and ion mobility-mass spectrometry in clinical chemistry.

Adv Clin Chem

January 2025

Department of Chemistry, Center for Innovative Technology, Institute of Chemical Biology, Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, United States. Electronic address:

Advancements in clinical chemistry have major implications in terms of public health, prompting many clinicians to seek out chemical information to aid in diagnoses and treatments. While mass spectrometry (MS) and hyphenated-MS techniques such as LC-MS or tandem MS/MS have long been the analytical methods of choice for many clinical applications, these methods routinely demonstrate difficulty in differentiating between isomeric forms in complex matrices. Consequently, ion mobility spectrometry (IM), which differentiates molecules on the basis of size, shape, and charge, has demonstrated unique advantages in the broad application of stand-alone IM and hyphenated IM instruments towards clinical challenges.

View Article and Find Full Text PDF

3D printing, as a layer-by-layer manufacturing technique, enables the customization of tissue engineering scaffolds. Surface modification of biomaterials is a beneficial approach to enhance the interaction with living cells and tissues. In this research, a polylactic acid/polyethylene glycol scaffold containing 30 % bredigite nanoparticles (PLA/PEG/B) was fabricated utilizing fused deposition modeling (FDM) 3D printing.

View Article and Find Full Text PDF

Enhanced bacterial cellulose production by indigenous isolates: Insights from mutagenesis and evolutionary techniques.

Int J Biol Macromol

January 2025

Iranian Research Organization for Science and Technology (IROST), Sh. Ehsani Rad St., Enqelab St., Ahmadabad Mostoufi Rd., Azadegan Highway, P. O. Box 33535-111, Tehran 3313193685, Iran.

Bacterial cellulose, with mechanical strength, high water absorption, and crystallinity, is used in eco-friendly packaging, wound dressings, and drug delivery systems. Despite its potential, industrial-scale production is limited by inefficiency and high costs, requiring high-yield strains and optimized growth conditions. This study found that indigenous isolates produce superior bacterial cellulose compared to standard strains.

View Article and Find Full Text PDF

Currently, biopolymer-based Zn-containing nanoforms are of great interest for medical applications. However, there is lack information on optimal synthesis parameters, reagents and stabilizing agent for production of zinc carbonate nanoparticles (ZnC-NPs). In this work, synthesis of ZnC-NPs was carried out by chemical precipitation with the use of chitosan, hydroxyethyl cellulose, methyl cellulose and hyaluronic acid as stabilizing agents.

View Article and Find Full Text PDF

Surface coating nanoarchitectonics for optimizing cytocompatibility and antimicrobial activity: The impact of hyaluronic acid positioning as the outermost layer.

Int J Biol Macromol

January 2025

Department of Chemistry, State University of Maringá, Maringá, PR, Brazil; Laboratory of Materials, Macromolecules, and Composites, Federal University of Technology - Paraná, Apucarana, PR, Brazil; National Institute for Materials Advancement, Pittsburg State University, Pittsburg, KS, USA; Department of Chemistry, Pittsburg State University, Pittsburg, KS, USA. Electronic address:

Polyelectrolyte multilayers (PEMs) based on hyaluronic acid (HA) and poly (diallyldimethylammonium chloride) (PDDA) were deposited on oxidized polystyrene (PS) via the layer-by-layer (LbL) method. The X-ray photoelectron spectroscopy (XPS) confirmed the PEM deposition on PS, and atomic force microscopy (AFM) indicated that the surface roughness of PS also increased after PEM deposition. The PEMs significantly enhanced PS wettability, reducing the contact angle from 73° on PS to 24° on PDDA-terminated (PDDA/HA) PEM (2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!