Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The influence of the length of the push-pull branches of quadrupolar molecules on their excited-state symmetry breaking was investigated using ultrafast time-resolved IR spectroscopy. For this, the excited-state dynamics of an A-π-D-π-A molecule was compared with those of an ADA analogue, where the same electron donor (D) and acceptor (A) subunits are directly linked without a phenylethynyl π-spacer. The spatial distribution of the excitation was visualized in real time by monitoring C≡C and C≡N vibrational modes localized in the spacer and acceptor units, respectively. In nonpolar solvents, the excited state is quadrupolar and the excitation is localized on the π-D-π center. In medium polarity solvents, the excitation spreads over the entire molecule but is no longer symmetric. Finally, in the most polar solvents, the excitation localizes on a single D-π-A branch, contrary to the ADA analogue where symmetry breaking is only partial.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.7b02944 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!