Microgreens are an excellent source of health-maintaining compounds, and the accumulation of these compounds in plant tissues may be stimulated by exogenous stimuli. While light quality effects on green basil microgreens are known, the present paper aims at improving the quality of acyanic (green) and cyanic (red) basil microgreens with different ratios of LED blue and red illumination. Growth, assimilatory and anthocyanin pigments, chlorophyll fluorescence, total phenolic, flavonoids, selected phenolic acid contents and antioxidant activity were assessed in microgreens grown for 17 days. Growth of microgreens was enhanced with predominantly blue illumination, larger cotyledon area and higher fresh mass. The same treatment elevated chlorophyll a and anthocyanin pigments contents. Colored light treatments decreased chlorophyll fluorescence ΦPSII values significantly in the green cultivar. Stimulation of phenolic synthesis and free radical scavenging activity were improved by predominantly red light in the green cultivar (up to 1.87 fold) and by predominantly blue light in the red cultivar (up to 1.73 fold). Rosmarinic and gallic acid synthesis was higher (up to 15- and 4-fold, respectively, compared to white treatment) in predominantly blue illumination. Red and blue LED ratios can be tailored to induce superior growth and phenolic contents in both red and green basil microgreens, as a convenient tool for producing higher quality foods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6150032 | PMC |
http://dx.doi.org/10.3390/molecules22122111 | DOI Listing |
Plants (Basel)
December 2024
Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy.
Numerous challenges are posed by the extra-terrestrial environment for space farming and various technological growth systems are being developed to allow for microgreens' cultivation in space. Microgreens, with their unique nutrient profiles, may well integrate the diet of crew members, being a natural substitute for chemical food supplements. However, the space radiation environment may alter plant properties, and there is still a knowledge gap concerning the effects of various types of radiation on plants and specifically on the application of efficient and rapid methods for selecting new species for space farming, based on their radio-resistance.
View Article and Find Full Text PDFSci Rep
November 2024
National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Klong Luang, Pathum Thani, 12120, Thailand.
Understanding the influence of light spectra on plant growth and antioxidant activities is crucial for optimizing cultivation practices and enhancing crop quality. In this study, we investigated the effects of different light treatments on growth parameters and antioxidant activities in five plant species: peppermint, Thai basil, cumin, lemon basil, and green holy basil. Our results revealed distinct responses to varying light spectra, with green light consistently promoting taller plant heights across all species.
View Article and Find Full Text PDFPlants (Basel)
August 2024
Research Center for Studies of Food Quality and Agricultural Products, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Bd. Marasti, 011464 Bucharest, Romania.
Considering the current global climate and demographic conditions, combined with the growing demand for food diversification, the need for innovative functional foods that adhere to the principles of the circular economy is becoming clear. Therefore, this research aims to identify an appropriate cultivation system and growth substrate to maintain a high germination rate and produce basil aromatic microplants with superior quality traits that are entirely edible, together with the substrate. Microplants were grown in both aseptic (AS) and non-aseptic (NAS) systems.
View Article and Find Full Text PDFBMC Plant Biol
July 2024
Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207, Bangladesh.
Background: The effects of different photoperiods on plant phytochemical synthesis can be improved by adjusting the daily light integral. Photoperiod is one of the most important environmental factors that control growth, plant's internal rhythm and the synthesis of secondary metabolites. Information about the appropriate standard in terms of photoperiod for growing basil microgreens as one of the most important medicinal plants is limited.
View Article and Find Full Text PDFJ Exp Bot
September 2024
Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University & Research, PO Box 16, Wageningen 6700AA, The Netherlands.
Whether green light promotes or represses plant growth is an unresolved but important question, warranting a global meta-analysis of published data. We collected 136 datasets from 48 publications on 17 crop species, and calculated the green light effect for a range of plant traits. For each trait the effect was calculated as the ratio between the trait value attained under a red/blue background light plus green, divided by the value attained under the background light only, both having the same light intensity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!