Because only 0.01% of prokaryotic genospecies can be cultured and in situ observations are often impracticable, culture-independent methods are required to understand microbial life and harness potential applications of microbes. Here, we report a methodology for the production of proteins with desired functions based on single amplified genomes (SAGs) from unculturable species. We use this method to resurrect an alcohol dehydrogenase (ADH/D1) from an uncharacterized halo-thermophilic archaeon collected from a brine pool at the bottom of the Red Sea. Our crystal structure of 5,6-dihydroxy NADPH-bound ADH/D1 combined with biochemical analyses reveal the molecular features of its halo-thermophily, its unique habitat adaptations, and its possible reaction mechanism for atypical oxygen activation. Our strategy offers a general guide for using SAGs as a source for scientific and industrial investigations of "microbial dark matter."
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acschembio.7b00792 | DOI Listing |
Nat Commun
September 2024
Biogeochemistry Research Center (BGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natsushima 2-15, Yokosuka, Kanagawa, 237-0061, Japan.
Returned samples from the carbonaceous asteroid (162173) Ryugu provide pristine information on the original aqueous alteration history of the Solar System. Secondary precipitates, such as carbonates and phyllosilicates, reveal elemental partitioning of the major component ions linked to the primordial brine composition of the asteroid. Here, we report on the elemental partitioning and Mg isotopic composition (Mg/Mg) of breunnerite [(Mg, Fe, Mn)CO] from the Ryugu C0002 sample and the A0106 and C0107 aggregates by sequential leaching extraction of salts, exchangeable ions, carbonates, and silicates.
View Article and Find Full Text PDFISME Commun
January 2024
Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL 33149, United States.
Deep-sea brine pools represent rare, extreme environments, providing unique insight into the limits of life on Earth, and by analogy, the plausibility of life beyond it. A distinguishing feature of many brine pools is presence of thick microbial mats that develop at the brine-seawater interface. While these bacterial and archaeal communities have received moderate attention, viruses and their host interactions in these environments remain underexplored.
View Article and Find Full Text PDFISME Commun
January 2024
Biology Department, National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa 3108000Israel.
Lucinid clams are one of the most diverse and widespread symbiont-bearing animal groups in both shallow and deep-sea chemosynthetic habitats. Lucinids harbor Ca. Thiodiazotropha symbionts that can oxidize inorganic and organic substrates such as hydrogen sulfide and formate to gain energy.
View Article and Find Full Text PDFNpj Mater Degrad
May 2024
Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843 USA.
In this work, the passivation and localized corrosion of selective laser melted (SLM) stainless steel 316 L when exposed to high pressures of CO with the presence of HS and Cl at 25 °C and 125 °C were studied. Depletion of Cr/Mo was observed at the cell interiors and melt-pool boundaries (MPBs) compared to the cell boundaries. Volta potential differences obtained from scanning Kelvin probe force microscopy (SKPFM) showed that the MPBs were 8-20 mV lower than the matrix, while the cell interiors were 20-50 mV lower than the cell boundaries.
View Article and Find Full Text PDFMar Environ Res
June 2024
National Institute of Oceanography, Israel Oceanographic and Limnological Research, Haifa, Israel; The Dr. Moses Strauss Department of Marine Geosciences, Charney School of Marine Sciences , University of Haifa, Haifa, Israel.
Discharge of gas-rich brines fuels productive chemosynthetic ecosystems in the deep sea. In these salty, methanic and sulfidic brines, microbial communities adapt to specific niches along the physicochemical gradients. However, the molecular mechanisms that underpin these adaptations are not fully known.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!