A novel three-dimensional transition metal dichalcogenide (TMD) structure consisting of seamless hollow nanoflakes on two-dimensional basal layers was synthesized by a one-step chemical vapor deposition method. Here, we demonstrate that the as-grown nanoflakes are formed on an organic promoter layer which served as a positive template and are swollen at the grain boundaries by the bubbling effect. TMD nanosheets with hollow nanoflakes are successfully applied as chemical sensors, and it was found that their gas adsorption property is strongly related to the internal strain gradient resulting from the variation in the lattice parameter. This result is consistent with the theoretical prediction in previous studies. Our chemical vapor deposition-based approach is an efficient way to generate TMD-based nanostructures over a large surface area for various practical applications such as chemical sensors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.7b14262DOI Listing

Publication Analysis

Top Keywords

hollow nanoflakes
8
chemical vapor
8
chemical sensors
8
strain-gradient gas
4
gas sensors
4
sensors based
4
based three-dimensional
4
three-dimensional hollow
4
hollow molybdenum
4
molybdenum disulfide
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!