Objective: This study aimed to investigate the mechanism of cyclic stretch that promotesthe osteogenic differentiation of human periodontal ligament cells (hPDLCs) through the mediation of extracellular-signal-regulated kinase 1/2 (ERK1/2).
Methods: hPDLCs were isolated through the explant method and cultured in vitro. hPDLCs were mechanically stimulated by a multi-channel cell-stress-loading system for 1, 3, 6, 12, and 24 h. The magnitude of stretch was 10% deformation, and the frequency was 0.5 Hz. Nonloaded cells were used as control group. ERK1/2 activation was blocked by U0126, a specific ERK1/2 pathway inhibitor. Additionally, hPDLCs were transfected with adenoviral vector encoding dominant negative ERK1/2 (DN-ERK1/2) to continuouslyinhibit ERK1/2 activation. The mRNA and protein levels of target geneswere detected through real-time polymerase chain reaction and Western blot.
Results: Cyclic stretching promoted the expression of ERK1/2, osteocalcin (OCN) mRNA, and bone sialoprotein (BSP) mRNA. The expression of runt-related transcription factor (Runx) 2 protein and mRNA also increased at 3 and 6 h of cyclic stretching. The inhibition of ERK1/2 by U0126 and DN-ERK1/2 suppressed the expressionof Runx2 mRNA, OCN mRNA, BSP mRNA, Runx 2 protein, and p-ERK1/2 protein relative to that in stretched cells without the ERK1/2 inhibitor.
Conclusions: ERK1/2 is a critical molecule in the mediation ofthe osteogenic differentiation of hPDLCs under mechanical stimulation. ERK1/2 activation induced the elevation of Runx2 protein levels, which may be involved in the stretch-induced expressions of OCN and BSP.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7030397 | PMC |
http://dx.doi.org/10.7518/hxkq.2017.05.015 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!