Gallamine exerts biphasic allosteric effects at muscarinic receptors.

Mol Pharmacol

Department of Psychiatry, University of Vermont College of Medicine, Burlington 05405.

Published: February 1989

Although gallamine and a number of other compounds have been reported to slow the rate of dissociation of labeled ligands, especially [3H]N-methylscopolamine (NMS), from muscarinic receptors of heart and brain, there has been some dispute as to whether the dissociation of [3H]quinuclidinyl benzilate (QNB) is subject to such allosteric regulation. The present studies were intended to determine whether past discrepancies might be due to differences between tissues. We have found that gallamine modulates the dissociation of [3H]QNB from muscarinic receptors of the heart in a biphasic manner. Low concentrations (micromolar) accelerate the rate of dissociation, whereas higher concentrations (millimolar) slow it; at about 0.1 mM, the two effects cancel each other. Similar results were obtained with muscarinic receptors from the brainstem, but gallamine had only marginal effects on the dissociation of [3H]QNB in the forebrain. On the other hand, verapamil exerts only monophasic effects (slowing) on the dissociation of both [3H]NMS and [3H]QNB from heart receptors and gallamine slows the dissociation of [3H]NMS to a similar extent in all three tissues. Thus, it appears that past discrepancies in the literature can be attributed to the tissues and concentrations of gallamine that were used. Furthermore, the biphasic effects of gallamine suggest that there are multiple allosteric regulatory sites associated with muscarinic receptors.

Download full-text PDF

Source

Publication Analysis

Top Keywords

muscarinic receptors
20
receptors gallamine
8
rate dissociation
8
receptors heart
8
dissociation [3h]qnb
8
dissociation [3h]nms
8
gallamine
7
dissociation
7
receptors
6
effects
5

Similar Publications

Strategic Inhibition of CHRM Autoantibodies: Molecular Insights and Therapeutic Potentials in Long COVID.

J Med Chem

January 2025

Research and Development, Health-Shield, Vedicinals-9, 40764 Langenfeld, Germany.

In addition to the conventional symptoms reported for COVID-19, it is becoming increasingly clear that patients with long COVID are exhibiting new symptoms due to the emergence of autoantibodies against G-protein-coupled receptors, among which human muscarinic cholinergic receptors (CHRMs) have been prominently reported. With a chronic condition such as long COVID, additional symptoms caused by anti-CHRM autoantibodies (AAbs) have proven to be an added burden on these patients. The origins of these AAbs, their interactions with, and effects on the function of neural and non-neural cells within the nervous system have remained unknown.

View Article and Find Full Text PDF

Acetylcholine modulates the network physiology of the hippocampus, a crucial brain structure that supports cognition and memory formation in mammals . In this and adjacent regions, synchronized neuronal activity within theta-band oscillations (4-10Hz) is correlated with attentive processing that leads to successful memory encoding . Acetylcholine facilitates the hippocampus entering a theta oscillatory regime and modulates the temporal organization of activity within theta oscillations .

View Article and Find Full Text PDF

Muscarinic cannabinoid suppression of excitation, a novel form of coincidence detection.

Pharmacol Res

January 2025

Gill Institute for Neuroscience, United States; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States. Electronic address:

Δ-tetrahydrocannabinol (THC), the chief psychoactive ingredient of cannabis, acts in the brain primarily via cannabinoid CB1 receptors. These receptors are implicated in several forms of synaptic plasticity - depolarization-induced suppression of excitation (DSE), metabotropic suppression of excitation (MSE), long term depression (LTD) and activation-dependent desensitization. Cultured autaptic hippocampal neurons express all of these, illustrating the rich functional and temporal heterogeneity of CB1 at a single set of synapses.

View Article and Find Full Text PDF

Scaled and Weighted Laplacian Matrices as Functional Descriptors for GPCR Ligands.

J Comput Chem

January 2025

Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Coyoacán, CDMX, Mexico.

The G protein-coupled receptor (GPCR) pharmacology accounts for a significant field in research, clinical studies, and therapeutics. Computer-aided drug discovery is an evolving suite of techniques and methodologies that facilitate accelerated progress in drug discovery and repositioning. However, the structure-activity relationships of molecules targeting GPCRs are highly challenging in many cases since slight structural modifications can lead to drastic changes in biological functionality.

View Article and Find Full Text PDF

One kind of hydroxycinnamic acid is calceolarioside A. Plantago coronopus, Cassinopsis madagascariensis, and other organisms for whom data are available are known to have this naturally occurring compound. IC50 values of Calceolarioside A for ovarian cell lines (NIH-OVCAR-3, ES-2, UACC-1598, Hs832.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!