How the hydrogen sorption properties of palladium are modified through interaction with iridium.

Phys Chem Chem Phys

Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504, 23 rue du Loess, BP 43, F-67034 Strasbourg, France.

Published: December 2017

Hydrogen sorption (adsorption/absorption) in metals, in the form of thin films or nanoparticles, is a key process in the fields of energy storage and heterogeneous catalysis. Atomic hydrogen dissolved in the subsurface of a metal affects its surface atomic and electronic structures, and thereby its surface reactivity and catalytic properties. In addition, alloy effects modify both catalytic and hydrogen sorption phenomena. In order to rationalize recent experimental results showing the negative impact of hydrogen absorption on catalysis, the present article proposes an insight into structure-reactivity relationships through computational simulations, using density functional theory, of hydrogen sorption in the near-surface region of palladium atomic layers interacting with an iridium substrate. A detailed analysis of the electronic structure using local projected densities of states (PDOS) and crystal orbital overlap population (COOP) curves was carried out. It is found that the Pd/Ir system, with respect to pure Pd surfaces, keeps acceptable adsorption properties for surface reactions while preventing hydrogen penetration. The results of electronic structure calculations show that the most important difference between Pd and Ir is related to the strong anti-bonding character of the 1s-H/5p-Ir interaction, leading to the non-bonding character of the sp-Ir interaction with hydrogen. Thus, increasing the Ir concentration in a Pd-based system increases the anti-bonding contribution, which strongly weakens the overall metal-hydrogen interaction.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7cp07155hDOI Listing

Publication Analysis

Top Keywords

hydrogen sorption
16
hydrogen
8
electronic structure
8
sorption properties
4
properties palladium
4
palladium modified
4
interaction
4
modified interaction
4
interaction iridium
4
iridium hydrogen
4

Similar Publications

Antibiotics used in the swine industry to treat diseases and improve animal growth are poorly absorbed by swine and have been classified as micropollutants due to their occurrence in surface water, wastewater, and soil. This study investigated the capacity of biochar produced from eastern red cedar to remove target antibiotics that have been extensively used in the swine industry. Biochar was produced by pyrolysis from eastern red cedar at 450 °C.

View Article and Find Full Text PDF

Sulfonated Cellulose: A Strategy for Effective Methylene Blue Sequestration.

ACS Omega

March 2025

Department of Chemistry, Faculty of Science, Ege University, Bornova, Izmir 35040, Türkiye.

This study investigates the sulfonation modification of cellulose for the removal of methylene blue (MB) from aqueous solutions. The prepared biosorbent was characterized, and its sorption capacity, kinetics, and thermodynamics were systematically evaluated. Fourier-transform infrared (FTIR) spectroscopy analyzed structural modifications, while scanning electron microscopy (SEM) examined the surface properties.

View Article and Find Full Text PDF

Emerging contaminants, particularly antibiotics and microplastics (MPs), present significant challenges in wastewater treatment and pose large ecological risks. This study investigates the removal efficiency of sulfamethoxazole (SMX) using Fe-Mn modified biochar (BFM) in fixed bed filtration columns, emphasizing the effect of the presence of polystyrene microplastics (PS-MPs) on SMX behavior in both water (pH≈5.6) and selected wastewater (pH≈8) systems.

View Article and Find Full Text PDF

Flue gas desulfurization and SO recovery within a flexible hydrogen-bonded organic framework.

Nat Chem

February 2025

School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, P. R. China.

The removal of SO from flue gas remains a challenge. Adsorption-based separation of SO using porous materials has been proposed as a more energy-efficient and cost-effective alternative to more traditional methods such as cryogenic distillations. Here we report a flexible hydrogen-bonded organic framework (HOF-NKU-1) that enables the sieving of SO through the guest-adaptive response and shape-memory effect of the material.

View Article and Find Full Text PDF

Soluble fibres are gaining increasing interest for functional food applications like bread, but their interaction with gluten and effects on dough rheology are not fully elucidated. This study hypothesized that soluble fibres influence gluten structure and dough rheology by acting as plasticizers and humectants. Plasticizing properties depend on the effective number of hydrogen bonding sites available in the fibre molecule ( ).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!