Intensity dependence of flow signal in slice selective velocity measurements.

Magn Reson Imaging

Department of Radiology, VA Medical Center, San Francisco, CA 94121.

Published: April 1989

The quantitative determination of flow velocities using inflow-outflow techniques require slice selective excitation pulses. The intensity-velocity relationship for such methods is shown to be such that flow velocities estimated using techniques which rely on an absolute calibration of the measured intensity are sensitive to the details of the slice profile of the excited material. This can cause errors when the estimation of flow velocities is made from the image intensity. A method which provides a measure of the flow velocities and which relies only on relative variations in intensity is examined and shown to be insensitive to details of the slice profile.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0730-725x(89)90325-1DOI Listing

Publication Analysis

Top Keywords

flow velocities
16
slice selective
8
details slice
8
slice profile
8
flow
5
intensity
4
intensity dependence
4
dependence flow
4
flow signal
4
slice
4

Similar Publications

This study investigated effects of experimental baroreceptor stimulation on bilateral blood flow velocities in the anterior and middle cerebral arteries (ACA and MCA) using functional transcranial Doppler sonography. Carotid baroreceptors were stimulated by neck suction in 33 healthy participants. Therefore, negative pressure (- 50 mmHg) was applied; neck pressure (+ 10 mmHg) was used as a control condition.

View Article and Find Full Text PDF

Concentrations of microplastics are both temporally and spatially variable in streamflow. Yet, an overwhelming number of published field studies do not target a range of flow conditions and fail to adequately capture particle transport within the full flow field. Since microplastic flux models rely on the representativeness of available data, current predictions of riverine exports contain substantial error.

View Article and Find Full Text PDF

Blood Flow Velocity Analysis in Cerebral Perforating Arteries on 7T 2D Phase Contrast MRI with an Open-Source Software Tool (SELMA).

Neuroinformatics

January 2025

Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.

Blood flow velocity in the cerebral perforating arteries can be quantified in a two-dimensional plane with phase contrast magnetic imaging (2D PC-MRI). The velocity pulsatility index (PI) can inform on the stiffness of these perforating arteries, which is related to several cerebrovascular diseases. Currently, there is no open-source analysis tool for 2D PC-MRI data from these small vessels, impeding the usage of these measurements.

View Article and Find Full Text PDF

Background And Objective: Sickle cell disease (SCD) is a vascular disease that may affect the retina. This study aimed to evaluate differences in average velocity (AV, mm/s), blood flow (BF, μL/min) and vessel diameter (VD, μm) from the temporal retinal arcades in SCD compared to healthy eyes using Doppler optical coherence tomography (DOCT).

Patients And Methods: A cross-sectional study was conducted between 2021 and 2023.

View Article and Find Full Text PDF

Objective: Intermittent pneumatic compression (IPC) is considered the standard of care for preventing venous thromboembolism (VTE) in the hospital setting. However, its widespread adoption after hospitalization has been limited due to its shortcomings in obstruction of venous valves and blood reflux. The objective of this study is to compare the effects of continuous graduated pneumatic compression (CGPC), a new device with a novel mechanism, and IPC on lower hemodynamics and the incidence of VTE in patients undergoing arthroplasty.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!