Changes in total starch and reducing sugar content in five sweetpotato varieties were investigated weekly during root development and following subjection of the roots to different postharvest handling and storage conditions. Freshly harvested (noncured) roots and cured roots (spread under the sun for 4 days at 29-31°C and 63-65% relative humidity [RH]) were separately stored at ambient conditions (23°C-26°C and 70-80% RH) and in a semiunderground pit (19-21°C and 90-95% RH). Changes in pasting properties of flour from sweetpotato roots during storage were analyzed at 14-day intervals. Significant varietal differences ( < .05) in total starch, sucrose, glucose, maltose, and fructose concentrations were registered. The total starch and sucrose content of the roots did not change significantly ( < .05) during root development (72.4 and 7.4%, respectively), whereas the average concentrations of glucose, maltose, and fructose decreased markedly (0.46-0.18%, 0.55-0.28%, and 0.43-0.21%), respectively. Storage led to decrease in total starch content (73-47.7%) and increase in sucrose and glucose concentrations (8.1-11.2% and 0.22-1.57%, respectively). Storage also resulted in reduction in sweetpotato flour pasting viscosities. Curing resulted in increased sucrose and glucose concentrations (9.1-11.2% and 0.45-0.85%, respectively) and marked reduction ( < .05) in total starch content (72.9-47.6%). This resulted in low pasting viscosities compared to flour from storage of uncured roots. These findings show that significant changes occur in the carbohydrate components of sweetpotato roots during storage compared to development and present an opportunity for diverse utilization of flours from sweetpotato roots in the food industry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5694865 | PMC |
http://dx.doi.org/10.1002/fsn3.496 | DOI Listing |
Int J Mol Sci
January 2025
Integrative Agriculture Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
Fruits and vegetables (F&Vs) are essential in daily life and industrial production. These perishable produces are vulnerable to various biotic and abiotic stresses during their growth, postharvest storage, and handling. As the fruit detaches from the plant, these stresses become more intense.
View Article and Find Full Text PDFFoods
January 2025
College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China.
Volatile organic compounds (VOCs) are closely associated with the maturity and variety of strawberries. However, the complexity of VOCs hinders their potential application in strawberry classification. This study developed a novel classification workflow using strawberry VOC profiles and machine learning (ML) models for precise fruit classification.
View Article and Find Full Text PDFFood Res Int
February 2025
Food Science and Nutrition Department, University of Minnesota, 1334 Eckles Ave, Saint Paul, MN, 55108, United States. Electronic address:
There is an ever-increasing demand for novel plant proteins that are non-allergenic, nutritionally complete, adequately functional, and can be sustainably sourced. RuBisCo is a protein that fulfills these requirements and can be sourced from alfalfa (Medicago sativa). Therefore, this study investigated several techniques to adequately extract alfalfa protein.
View Article and Find Full Text PDFInt J Food Sci
January 2025
Department of Biotechnology and General Technology of Food, Faculty of Food Technology, University of Agriculture in Krakow, Kraków, Poland.
Sprouts and microgreens which belong to the Brassicaceae family contain significantly more glucosinolates than mature vegetables, and their composition often differs too. These plant growth stages can be a valuable supplement of the aforementioned compounds in the diet. The content and proportion of individual glucosinolates in sprouts and microgreens can be regulated by modifying the length and temperature of cultivation, the type of light, the use of mineral compounds, elicitation, primming, and cold plasma as well as storage conditions.
View Article and Find Full Text PDFFront Microbiol
January 2025
ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, University of Manouba, Ariana, Tunisia.
Thiabendazole (TBZ), a recalcitrant fungicide, is frequently applied in postharvest fruit treatment and generates significant volumes of industrial wastewater (WW) that conventional treatment plants cannot handle. This explores a bioelectrochemical system (BES) for TBZ degradation using Tunisian hypersaline sediments (THSs) as inoculum. Four sets of BES, along with biological controls, were tested using THS subjected to different levels of TBZ biostimulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!