Warming can lead to increased growth of plants or algae at the base of the food web, which may increase the overall complexity of habitat available for other organisms. Temperature and habitat complexity have both been shown to alter the structure and functioning of communities, but they may also have interactive effects, for example, if the shade provided by additional habitat negates the positive effect of temperature on understory plant or algal growth. This study explored the interactive effects of these two major environmental factors in a manipulative field experiment, by assessing changes in ecosystem functioning (primary production and decomposition) and community structure in the presence and absence of artificial plants along a natural stream temperature gradient of 5-18°C. There was no effect of temperature or habitat complexity on benthic primary production, but epiphytic production increased with temperature in the more complex habitat. Cellulose decomposition rate increased with temperature, but was unaffected by habitat complexity. Macroinvertebrate communities were less similar to each other as temperature increased, while habitat complexity only altered community composition in the coldest streams. There was also an overall increase in macroinvertebrate abundance, body mass, and biomass in the warmest streams, driven by increasing dominance of snails and blackfly larvae. Presence of habitat complexity, however, dampened the strength of this temperature effect on the abundance of macroinvertebrates in the benthos. The interactive effects that were observed suggest that habitat complexity can modify the effects of temperature on important ecosystem functions and community structure, which may alter energy flow through the food web. Given that warming is likely to increase habitat complexity, particularly at higher latitudes, more studies should investigate these two major environmental factors in combination to improve our ability to predict the impacts of future global change.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5696415PMC
http://dx.doi.org/10.1002/ece3.3412DOI Listing

Publication Analysis

Top Keywords

habitat complexity
32
interactive effects
16
temperature habitat
12
habitat
11
temperature
10
complexity
9
effects temperature
8
food web
8
major environmental
8
environmental factors
8

Similar Publications

Unlabelled: Chickens are one of the most economically important poultry species, and their egg-laying performance is a crucial economic trait. The intestinal microbiome plays a significant role in the egg-laying performance. To clarify the diversity of chicken intestinal microbiota and its connection to egg-laying performance, this study utilized 16S rRNA sequencing technology to characterize the intestinal microbiomes of 101 chickens from 13 breeds with varying levels of egg production.

View Article and Find Full Text PDF

The marine ecosystem is characterized by a rich diversity of bacterial hosts and their phages. The propagation of phages is primarily limited by their ability to adsorb to host cells and is further challenged by various bacterial defense mechanisms. To fully realize the potential of phage therapy in aquaculture, a comprehensive understanding of phage-host interactions and their regulation is essential.

View Article and Find Full Text PDF

Notwithstanding the obvious interconnection between humans and the world that they share with non-human inhabitants, the impact of our changing climate on certain aspects of the public health ecosystem has been under-investigated. We briefly describe some of the possible climate-induced changes in the procurement, distribution, access and use of medications, including those for animals generally and livestock specifically. A fuller understanding of the effect of climate change on medicine supply, access, use and quality, including how these affect antimicrobial resistance, would contribute to the further development of the "One Health" and "One Health Systems" concepts.

View Article and Find Full Text PDF

Environmental changes are a growing concern, as they exert pressures on ecosystems. In some cases, such changes lead to shifts in ecosystem structure. However, species can adapt to changes through evolution, and it is unclear how evolution interacts with regime shifts, which restricts ecosystem management strategies.

View Article and Find Full Text PDF

Assembly Graph as the Rosetta Stone of Ecological Assembly.

Environ Microbiol

January 2025

Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA.

Ecological assembly-the process of ecological community formation through species introductions-has recently seen exciting theoretical advancements across dynamical, informational, and probabilistic approaches. However, these theories often remain inaccessible to non-theoreticians, and they lack a unifying lens. Here, I introduce the assembly graph as an integrative tool to connect these emerging theories.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!