Bush-crickets (Orthoptera: Tettigoniidae) generate sound using tegminal stridulation. Signalling effectiveness is affected by the widely varying acoustic parameters of temporal pattern, frequency and spectral purity (tonality). During stridulation, frequency multiplication occurs as a scraper on one wing scrapes across a file of sclerotized teeth on the other. The frequency with which these tooth-scraper interactions occur, along with radiating wing cell resonant properties, dictates both frequency and tonality in the call. Bush-cricket species produce calls ranging from resonant, tonal calls through to non-resonant, broadband signals. The differences are believed to result from differences in file tooth arrangement and wing radiators, but a systematic test of the structural causes of broadband or tonal calls is lacking. Using phylogenetically controlled structural equation models, we show that parameters of file tooth density and file length are the best-fitting predictors of tonality across 40 bush-cricket species. Features of file morphology constrain the production of spectrally pure signals, but systematic distribution of teeth alone does not explain pure-tone sound production in this family.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5719386 | PMC |
http://dx.doi.org/10.1098/rsbl.2017.0573 | DOI Listing |
J Environ Manage
January 2025
GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), Parque Tecnológico, Edificio 202, 48170, Zamudio, Spain.
Current industrial separation and sorting technologies struggle to efficiently identify and classify a large part of Waste of Electric and Electronic Equipment (WEEE) plastics due to their high content of certain additives. In this study, Raman spectroscopy in combination with machine learning methods was assessed to develop classification models that could improve the identification and separation of Polystyrene (PS), Acrylonitrile Butadiene Styrene (ABS), Polycarbonate (PC) and the blend PC/ABS contained in WEEE streams, including black plastics, to increase their recycling rate, and to enhance plastics circularity. Raman spectral analysis was carried out with two lasers of different excitation wavelengths (785 nm and 1064 nm) and varying setting parameters (laser power, integration time, focus distance) with the aim at reducing the fluorescence.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Nanjing University, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, 210023, Nanjing, CHINA.
Ultra-narrowband and highly modifiable multiple resonance thermally activated delayed fluorescence (MR-TADF) materials are crucial for realizing high-performance wide-color-gamut display applications. Despite progress, most MR-TADF emitters remain confined to blue and green wavelengths, with difficulties extending into longer wavelengths without significant spectral broadening, which compromises color purity in full-color organic light-emitting diode (OLED) displays. In this work, we present a novel tetraazacyclophane-based architecture embedding dual boron atoms to remarkedly enhance intramolecular charge transfer through the strategic positioning of boron and nitrogen atoms.
View Article and Find Full Text PDFCascaded Raman fiber lasers (CRFLs) with wavelength-independent feedback can provide power at any wavelength in near-IR regions. However, broad feedback leads to a broad output spectrum, decreasing spectral power density at a desired wavelength. The output characteristics of CRFLs can be controlled by controlling the feedback.
View Article and Find Full Text PDFNanoscale
December 2024
School of Physics and Electronics, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, and College of Materials Science and Engineering, Hunan University, Changsha 410082, China.
Quasi-2D perovskites have emerged as a promising candidate material for displays owing to their high photoluminescence quantum yields and low-cost solution synthesis. However, achieving pure red quasi-2D perovskite films with luminescence centered at 630 nm and a narrow emission band presents a critical challenge for high-definition displays. Herein, by incorporating 18-crown-6 as additives that simultaneously passivate defects and regulate phase distribution, full iodine-based quasi-2D perovskite films with a single red emission peak and spectral stability are designed.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan.
Blue perovskite light-emitting diodes (LEDs) lag behind green and red LEDs, which have made considerable strides in efficiency and stability. The main disadvantage is its unmodulated phase domains and low energy transfer efficiency, which impede the efficiency, optical purity, and operational stability of the devices. Herein, we show that using biomolecule-derived plasmonic nanostructures can significantly promote defect passivation, van der Waals gap reduction, and cascade energy transfer through synergistic small-molecule interactions and localized surface plasmonic contributions, thereby improving the electroluminescence (EL) properties and operational stability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!