A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Rat Model of Brain Injury to Occupants of Vehicles Targeted by Land Mines: Mitigation by Elastomeric Frame Designs. | LitMetric

Rat Model of Brain Injury to Occupants of Vehicles Targeted by Land Mines: Mitigation by Elastomeric Frame Designs.

J Neurotrauma

1 Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, Maryland.

Published: May 2018

Many victims of blast traumatic brain injury (TBI) are occupants of vehicles targeted by land mines. A rat model of under-vehicle blast TBI was used to test the hypothesis that the ensuing neuropathology and altered behavior are mitigated by vehicle frame designs that dramatically reduce blast-induced acceleration (G force). Male rats were restrained on an aluminum platform that was accelerated vertically at up to 2850g, in response to detonation of an explosive positioned under a second platform in contact with the top via different structures. The presence of elastomeric, polyurea-coated aluminum cylinders between the platforms reduced acceleration by 80% to 550g compared with 2350g with uncoated cylinders. Moreover, 67% of rats exposed to 2850g, and 20% of those exposed to 2350g died immediately after blast, whereas all rats subjected to 550g blast survived. Assays for working memory (Y maze) and anxiety (Plus maze) were conducted for up to 28 days. Rats were euthanized at 24 h or 29 days, and their brains were used for histopathology and neurochemical measurements. Rats exposed to 2350g blasts exhibited increased cleaved caspase-3 immunoreactive neurons in the hippocampus. There was also increased vascular immunoglobulin (Ig)G effusion and F4/80 immunopositive macrophages/microglia. Blast exposure reduced hippocampal levels of synaptic proteins Bassoon and Homer-1, which were associated with impaired performance in the Y maze and the Plus maze tests. These changes observed after 2350g blasts were reduced or eliminated with the use of polyurea-coated cylinders. Such advances in vehicle designs should aid in the development of the next generation of blast-resistant vehicles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6421988PMC
http://dx.doi.org/10.1089/neu.2017.5401DOI Listing

Publication Analysis

Top Keywords

rat model
8
brain injury
8
occupants vehicles
8
vehicles targeted
8
targeted land
8
land mines
8
frame designs
8
rats exposed
8
exposed 2350g
8
2350g blasts
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!