The physiological function of Arabidopsis thaliana universal stress protein (AtUSP) in plant has remained unclear. Thus, we report here the functional role of the universal stress protein, AtUSP (At3g53990). To determine how AtUSP affects physiological responses towards cold stress, AtUSP overexpression (AtUSP OE) and T-DNA insertion knock-out (, SALK_146059) mutant lines were used. The results indicated that AtUSP OE enhanced plant tolerance to cold stress, whereas did not. AtUSP is localized in the nucleus and cytoplasm, and cold stress significantly affects RNA metabolism such as by misfolding and secondary structure changes of RNA. Therefore, we investigated the relationship of AtUSP with RNA metabolism. We found that AtUSP can bind nucleic acids, including single- and double-stranded DNA and luciferase mRNA. AtUSP also displayed strong nucleic acid-melting activity. We expressed AtUSP in RL211 , which contains a hairpin-loop RNA structure upstream of chloramphenicol acetyltransferase (), and observed that AtUSP exhibited anti-termination activity that enabled gene expression. AtUSP expression in the cold-sensitive Escherichia coli ( mutant BX04 complemented the cold sensitivity of the mutant cells. As these properties are typical characteristics of RNA chaperones, we conclude that AtUSP functions as a RNA chaperone under cold-shock conditions. Thus, the enhanced tolerance of AtUSP OE lines to cold stress is mediated by the RNA chaperone function of AtUSP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5751149PMC
http://dx.doi.org/10.3390/ijms18122546DOI Listing

Publication Analysis

Top Keywords

cold stress
20
atusp
16
rna chaperone
12
universal stress
12
stress protein
12
rna
8
chaperone function
8
stress
8
protein atusp
8
stress atusp
8

Similar Publications

Background: It is not yet clear to what extent the physiological regulatory mechanisms that maintain core body temperature are reflected by changes in resting energy expenditure (REE). Particularly in indirect calorimetry with a canopy, the effects of short-term temperature exposures have not yet been investigated. This can be of relevance for the determination of REE in practice.

View Article and Find Full Text PDF

Calcium ions (Ca) are important second messengers and are known to participate in cold signal transduction. In the current study, we characterized a Ca-binding protein gene, VamCP1, from the extremely cold-tolerant grape species Vitis amurensis. VamCP1 expression varied among organs but was highest in leaves following cold treatment, peaking 24 h after treatment onset.

View Article and Find Full Text PDF

Jujube (Ziziphus ujuba Mill.) holds great importance as a fruit tree in China, with strong tolerance to drought and saline stress, but its growth is limited by vulnerability to cold stress. Consequently, the role of MAPK cascades in mediating jujube cold stress response remains unclear, with the specific function of ZjMAPKK4 in this context yet to be fully elucidated.

View Article and Find Full Text PDF

Epoxide hydrolases JHEH1 and JHEH2 deficiency impairs glucose metabolism in Drosophila.

Biochem Biophys Res Commun

January 2025

Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan. Electronic address:

Epoxide hydrolases (EHs) play pivotal roles in detoxification, catabolism, and signaling by converting epoxides into diols and have been implicated in several diseases, such as cancers and diabetes. EH homologs in insects are designated as Juvenile hormone epoxide hydrolases (JHEHs) due to their catalytic activity toward Juvenile hormone (JH). However, the biological function of JHEHs has been controversial in the fruit fly Drosophila melanogaster.

View Article and Find Full Text PDF

This study examined the energy-dependent physiological responses, including stress, innate immune, and antioxidant systems, as well as indicators of energy mobilization, in pacu (Piaractus mesopotamicus) exposed to intermittent cold, aiming to assess the correlations between these responses. The fish were acclimated to 28 °C, divided into two groups, a control group maintained at 28 °C, and another exposed to 16 °C for two 24 h periods with a 5-day interval between them. The fish were sampled at six time points: baseline (after acclimatization to 28 °C), 24 h after the 1st exposure to 16 °C, after 5 days of recovery at 28 °C, 24 h after the 2nd exposure to 16 °C, and after 24 and 48 h of recovery at 28 °C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!