Ketamine, a Clinically Used Anesthetic, Inhibits Vascular Smooth Muscle Cell Proliferation via PP2A-Activated PI3K/Akt/ERK Inhibition.

Int J Mol Sci

Department of Pharmacology and Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, No. 250, Wu-Hsing St., Taipei 110, Taiwan.

Published: November 2017

Abnormal proliferation of vascular smooth muscle cells (VSMCs) gives rise to major pathological processes involved in the development of cardiovascular diseases. The use of anti-proliferative agents for VSMCs offers potential for the treatment of vascular disorders. Intravenous anesthetics are firmly established to have direct effects on VSMCs, resulting in modulation of blood pressure. Ketamine has been used for many years in the intensive care unit (ICU) for sedation, and has recently been considered for adjunctive therapy. In the present study, we investigated the effects of ketamine on platelet-derived growth factor BB (PDGF-BB)-induced VSMC proliferation and the associated mechanism. Ketamine concentration-dependently inhibited PDGF-BB-induced VSMC proliferation without cytotoxicity, and phosphatidylinositol 3-kinase (PI3K) and extracellular signal-regulated protein kinase (ERK) inhibitors, LY294002 and PD98059, respectively, have similar inhibitory effects. Ketamine was shown to attenuate PI3K, Akt, and ERK1/2 phosphorylation induced by PDGF-BB. Okadaic acid, a selective protein phosphatase 2A (PP2A) inhibitor, significantly reversed ketamine-mediated PDGF-BB-induced PI3K, Akt, and ERK1/2 phosphorylation; a transfected protein phosphatse 2a ( siRNA reversed Akt and ERK1/2 phosphorylation; and 3-O-Methyl-sphingomyeline (3-OME), an inhibitor of sphingomyelinase, also significantly reversed ERK1/2 phosphorylation. Moreover, ketamine alone significantly inhibited tyrosine phosphorylation and demethylation of PP2A in a concentration-dependent manner. In addition, the siRNA potently reversed the ketamine-activated catalytic subunit (PP2A-C) of PP2A. These results provide evidence of an anti-proliferating effect of ketamine in VSMCs, showing activation of PP2A blocks PI3K, Akt, and ERK phosphorylation that subsequently inhibits the proliferation of VSMCs. Thus, ketamine may be considered a potential effective therapeutic agent for reducing atherosclerotic process by blocking the proliferation of VSMCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5751148PMC
http://dx.doi.org/10.3390/ijms18122545DOI Listing

Publication Analysis

Top Keywords

erk1/2 phosphorylation
16
pi3k akt
12
akt erk1/2
12
ketamine
8
vascular smooth
8
smooth muscle
8
effects ketamine
8
pdgf-bb-induced vsmc
8
vsmc proliferation
8
proliferation vsmcs
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!