Anthocyanins are potential health-promoting compounds in the human diet. The atv (atroviolacium) locus, derived from the wild tomato species Solanum cheesmaniae, has been shown to enhance anthocyanin pigmentation in tomato fruit when it co-exists with either the Aft (Anthocyanin fruit) or the Abg (Aubergine) locus. In the present study, the atv locus was fine-mapped to an approximately 5.0-kb interval on chromosome 7. A putative R3 MYB repressor was identified in this interval and is hereby designated as SlMYBATV. The allele of SlMYBATV underlying the atv locus harbored a 4-bp insertion in its coding region, which is predicted to result in a frame-shift and premature protein truncation. The other candidate R3 MYB and R2R3 MYB repressors of anthocyanin biosynthesis were also identified in tomato via a genome-wide search. Transcriptional analysis showed that most of the structural genes and several regulatory genes of anthocyanin biosynthesis were up-regulated in the tomato SlMYBATV mutant lines. These findings may facilitate the elucidation of the molecular mechanisms underlying anthocyanin pigmentation in tomato fruit and help in the marker-assisted selection of anthocyanin-enriched tomato cultivars.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5854135 | PMC |
http://dx.doi.org/10.1093/jxb/erx382 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!