Herein, we report the soft-templated preparation of mesoporous iron oxide using an asymmetric poly(styrene-b-acrylic acid-b-ethylene glycol) (PS-b-PAA-b-PEG) triblock copolymer. This polymer forms a micelle consisting of a PS core, a PAA shell, and a PEG corona in aqueous solutions, which can serve as a soft template. The mesoporous iron oxide obtained at an optimized calcination temperature of 400 °C exhibited an average pore diameter of 39 nm, with large specific surface area and pore volume of 86.9 m g and 0.218 cm g, respectively. The as-prepared mesoporous iron oxide materials showed intrinsic peroxidase-like activities toward the catalytic oxidation of 3,3',5,5'-tertamethylbenzidine (TMB) in the presence of hydrogen peroxide (HO). This mimetic feature was further exploited to develop a simple colorimetric (naked-eye) and electrochemical assay for the detection of glucose. Both our colorimetric (naked-eye and UV-vis) and electrochemical assays estimated the glucose concentration to be in the linear range from 1.0 μM to 100 μM with a detection limit of 1.0 μM. We envisage that our integrated detection platform for HO and glucose will find a wide range of applications in developing various biosensors in the field of personalized medicine, food-safety detection, environmental-pollution control, and agro-biotechnology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.7b13835 | DOI Listing |
J Colloid Interface Sci
April 2025
Particle Engineering Laboratory (China Petroleum and Chemical Industry Federation), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 Jiangsu, PR China. Electronic address:
High-performance electrocatalysts are highly concerned in oxygen reduction reaction (ORR) related energy applications. However, facile synthesis of hierarchically porous structures with highly exposed active sites and improved mass transfer is challenging. Herein, we develop a novel assembly-foaming strategy for synthesizing hierarchically porous nitrogen-doped carbon supported single-atom iron catalysts.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
School of Chemical Engineering, the University of Adelaide, Adelaide, South Australia, 5000, Australia.
Metal hexacyanoferrates (HCFs), also known as Prussian blue analogues, are ideal cathodes for potassium-ion batteries (PIBs) due to their nontoxicity and cost-effectiveness. Nevertheless, obtaining metal HCF cathode materials with both long-term cycling stability and high rate performance remains a daunting challenge. In this study, we present mesoporous single-crystalline iron hexacyanoferrate (MSC-FeHCF) microspheres, featuring a single-crystalline structure that contains interconnected pores spanning the entire crystal lattice.
View Article and Find Full Text PDFCurr Cancer Drug Targets
January 2025
Department of Clinical Laboratory, Gongli Hospital of Shanghai Pudong New Area, Shanghai, 200135, China.
Background: Lenvatinib is an oral tyrosine kinase inhibitor that selectively inhib-its receptors involved in tumor angiogenesis and tumor growth. It is an emerging first-line treatment agent for hepatocellular carcinoma (HCC). However, there is no intravenous ad-ministration of Lenvatinib.
View Article and Find Full Text PDFDrug Deliv Transl Res
January 2025
Model System for Infection and Immunity, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany.
Two features of macrophages make them attractive for targeted transport of drugs: they efficiently take up a broad spectrum of nanoparticles (NPs) and, by sensing cytokine gradients, they are attracted to the sites of infection and inflammation. To expand the potential of macrophages as drug carriers, we investigated whether macrophages could be simultaneously coloaded with different types of nanoparticles, thus equipping individual cells with different functionalities. We used superparamagnetic iron oxide NPs (SPIONs), which produce apoptosis-inducing hyperthermia when exposed to an alternating magnetic field (AMF), and co-loaded them on macrophages together with drug-containing NPs (inorganic-organic nanoparticles (IOH-NPs) or mesoporous silica NPs (MSNs)).
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!