We study the impact of grain boundaries (GB) and misorientation angles between grains on electronic transport in 2-dimensional materials. Here we have developed a numerical model based on the first-principles electronic bandstructure calculations in conjunction with a method which computes electron transmission coefficients from simultaneous conservation of energy and momentum at the interface to essentially evaluate GB/interface resistance in a Landauer formalism. We find that the resistance across graphene GBs vary over a wide range depending on misorientation angles and type of GBs, starting from 53 Ω μm for low-mismatch angles in twin (symmetric) GBs to about 10 Ω μm for 21° mismatch in tilt (asymmetric) GBs. On the other hand, misorientation angles have weak influence on the resistance across MoS GBs, ranging from about 130 Ω μm for low mismatch angles to about 6000 Ω μm for 21°. The interface resistance across graphene-MoS heterojunctions also exhibits a strong dependence on misorientation angles with resistance values ranging from about 100 Ω μm for low-mismatch angles in Class-I (symmetric) interfaces to 10 Ω μm for 14° mismatch in Class-II (asymmetric) interfaces. Overall, symmetric homo/heterojunctions exhibit a weak dependence on misorientation angles, while in MoS both symmetric and asymmetric GBs show a gradual dependence on mismatch angles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5707417 | PMC |
http://dx.doi.org/10.1038/s41598-017-16744-0 | DOI Listing |
Materials (Basel)
December 2024
Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16803, USA.
Traditional defect recovery methods rely on high-temperature annealing, often exceeding 750 °C for FeCrAl. In this study, we introduce electron wind force (EWF)-assisted annealing as an alternative approach to mitigate irradiation-induced defects at significantly lower temperatures. FeCrAl samples irradiated with 5 MeV Zr ions at a dose of 10 cm were annealed using EWF at 250 °C for 60 s.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
School of Materials Science and Engineering, North University of China, Taiyuan 030051, China.
In this paper, in order to investigate the harmonious relationship between the compression deformation behavior of metastable β titanium alloy and the microstructure evolution, the β solution-treated Ti-10V-2Fe-3Al (Ti-1023) alloy was compressed at room temperature and its deformation behavior was analyzed. Optical microscopy (OM) and field emission electron microscopy (FESEM) were used to study the microstructure evolution of alloys at different strain rates. The results show that the stress-induced martensite transformation (SIMT) is more easily activated by low strain rate compression deformation, which is conducive to improving its comprehensive mechanical properties.
View Article and Find Full Text PDFNanoscale Adv
December 2024
Department of Mechanical Engineering, IIT Bombay Mumbai Maharashtra India 400076
Using the spectral energy density method, we predict the phonon scattering mean lifetimes of polycrystalline graphene (PC-G) having polycrystallinity only along the -axis with seven different misorientation (tilt) angles at room temperature. Contrary to other studies on PC-G samples, our results indicate a strong dependence of the thermal conductivity (TC) on the tilt angles which we attribute to careful preparation of our grain boundaries-based samples without introducing any local strains and ensuring periodic boundary conditions for the supercells along the and axes. We also show that the square of the group velocity components along and axes and the phonon lifetimes are uncorrelated and the phonon density of states are almost the same for all samples with different tilt angles.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Aerospace Engineering, Iowa State University, Ames, Iowa 50014, United States.
Using an interatomic potential that can capture the tetrahedral configuration of water molecules (HO) in ice without the need to explicitly track the motion of the O and H atoms, coarse-grained (CG) atomistic simulations are performed here to characterize the structures, energy, cohesive strengths, and fracture resistance of the grain boundaries (GBs) in polycrystalline ice resulting from water freezing. Taking the symmetric tilt grain boundaries (STGBs) with a tilting axis of ⟨0001⟩ as an example, several main findings from our simulations are (i) the GB energy, , exhibits a strong dependence on the GB misorientation angle, θ. The classical Read-Shockley model only predicts the - θ relation reasonably well when θ < 20° or θ > 45° but fails when 20° < θ < 45°; (ii) two "valleys" appear in the -θ landscape.
View Article and Find Full Text PDFSci Technol Adv Mater
August 2024
Department of Materials Physics, Nagoya University, Nagoya, Japan.
Understanding the nature of grain boundaries is a prerequisite for fabricating high-performance superconducting bulks and wires. For iron-based superconductors [e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!