Purpose: Non-invasive assessment of inflammatory activity in the course of various diseases is a largely unmet clinical challenge. An early feature of inflammation is local secretion of the alarmin S100A8/A9 by activated phagocytes. We here evaluate a novel S100A9-targeted small molecule tracer Cy5.5-CES271 for in vivo optical imaging of inflammatory activity in exemplary disease models.
Procedures: Dynamics of Cy5.5-CES271 was characterized in a model of irritant contact dermatitis by sequential fluorescence reflectance imaging (FRI) up to 24 h postinjection (p.i.). Specificity of Cy5.5-CES271 binding to S100A9 in vivo was examined by blocking studies and by employing S100A9 mice. Finally, S100A9 secretion in acute lung inflammation was assessed by Cy5.5-CES271 and FRI of explanted lungs.
Results: In ear inflammation, we were able to non-invasively follow the time course of S100A9 expression using Cy5.5-CES271 and FRI over 24 h p.i. (peak activity at 3 h p.i.). Specificity of imaging could be shown by a significant signal reduction after predosing and using S100A9 mice. In acute lung injury, local and systemic S100A8/A9 levels increased over time and correlated significantly with FRI signal levels in explanted lungs.
Conclusions: Cy5.5-CES271 shows significant accumulation in models of inflammatory diseases and specific binding to S100A9 in vivo. This study, for the first time, demonstrates the potential of a small molecule non-peptidic tracer enabling imaging of S100A9 as a marker of local phagocyte activity in inflammatory scenarios suggesting this compound class for translational attempts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11307-017-1148-9 | DOI Listing |
Clin Exp Optom
January 2025
2nd Department of Ophthalmology, Medical School of National and Kapodistrian University of Athens, 'Attikon' University General Hospital, Athens, Greece.
Clinical Relevance: Vitreous floaters have been associated with depressive and anxiety symptoms. However, there is a scarcity in the literature regarding the possible impact of vitreous flashes on the psychological status of the patients.
Background: Photopsias and vitreous floaters frequently co-exist.
ACS Nano
January 2025
Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
Optical metasurfaces, arrays of nanostructures engineered to manipulate light, have emerged as a transformative technology in both research and industry due to their compact design and exceptional light control capabilities. Their strong light-matter interactions enable precise wavefront modulation, polarization control, and significant near-field enhancements. These unique properties have recently driven their application in biomedical fields.
View Article and Find Full Text PDFJ Neuroophthalmol
November 2024
Ophthalmology Department (AC-C, MF-R, SA-A, RA, BS-D), Seu Maternitat, Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain; Faculty of Medicine and Health Sciences (AC-C, SA-A, BS-D), Universitat de Barcelona, Barcelona, Spain; Fundació Per La Recerca Biomèdica-IDIBAPS (MF-R, SA-A, BS-D), Barcelona, Spain; and Ophthalmology Department (MS-G), Consorci Mar Parc de Salut de Barcelona, Barcelona, Spain.
Background: Autosomal Dominant Optic Atrophy (ADOA) is a hereditary optic neuropathy characterized by retinal ganglion cell degeneration and optic nerve fiber loss. This study examined the correlation between clinical and structural parameters in patients with ADOA using optical coherence tomography (OCT) and explored potential clinical biomarkers.
Methods: A cross-sectional, case-control observational study included 27 patients with ADOA and 27 age- and sex-matched healthy controls.
Transl Vis Sci Technol
January 2025
Department of Ophthalmology, University Hospital Bonn, Bonn, Germany.
Purpose: To compare a novel high-resolution optical coherence tomography (OCT) with improved axial resolution (High-Res OCT) with conventional spectral-domain OCT (SD-OCT) with regard to their capacity to characterize the disorganization of the retinal inner layers (DRIL) in diabetic maculopathy.
Methods: Diabetic patients underwent multimodal retinal imaging (SD-OCT, High-Res OCT, and color fundus photography). Best-corrected visual acuity and diabetes characteristics were recorded.
Invest Ophthalmol Vis Sci
January 2025
Department of Surgical Sciences, Eye Clinic Section, University of Turin, Turin, Italy.
Purpose: This study aimed to comprehensively assess visual performance in eyes with idiopathic epiretinal membrane (iERM). Additionally, it sought to explore the associations between optical coherence tomography (OCT) imaging biomarkers and visual performance in patients with iERM.
Methods: In this prospective, non-interventional study, 57 participants with treatment-naïve iERM from the University of Turin, between September 2023 and March 2024 were enrolled.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!