The role of DNA sequence in nucleosome breathing.

Eur Phys J E Soft Matter

Institute Lorentz for Theoretical Physics, Leiden University, Niels Bohrweg 2, 2333 CA, Leiden, The Netherlands.

Published: November 2017

Similar Publications

Thermodynamics of nucleosome breathing and positioning.

J Chem Phys

January 2025

Department of Physics and Astronomy and Center for Quantitative Biology, Rutgers University, Piscataway, New Jersey 08854, USA.

Nucleosomes are fundamental units of chromatin in which a length of genomic DNA is wrapped around a histone octamer spool in a left-handed superhelix. Large-scale nucleosome maps show a wide distribution of DNA wrapping lengths, which in some cases are tens of base pairs (bp) shorter than the 147 bp canonical wrapping length observed in nucleosome crystal structures. Here, we develop a thermodynamic model that assumes a constant free energy cost of unwrapping a nucleosomal bp.

View Article and Find Full Text PDF

This study investigates nucleosome dynamics using both all-atom and coarse-grained (CG) molecular dynamics simulations, focusing on the SIRAH force field. Simulations are performed for two nucleosomal DNA sequences-ASP and Widom-601-over six microseconds at physiological salt concentrations. Comparative analysis of structural parameters, such as groove widths and base pair geometries, reveals good agreement between atomistic and CG models, though CG simulations exhibit broader conformational sampling and greater breathing motion of DNA ends.

View Article and Find Full Text PDF

Epigenetic Histone Modifications H3K36me3 and H4K5/8/12/16ac Induce Open Polynucleosome Conformations via Different Mechanisms.

J Mol Biol

August 2024

Department of Physics and Center for NanoScience (CeNS), LMU Munich, Amaliensstrasse 54, 80799 Munich, Germany; Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, the Netherlands. Electronic address:

Nucleosomes are the basic compaction unit of chromatin and nucleosome structure and their higher-order assemblies regulate genome accessibility. Many post-translational modifications alter nucleosome dynamics, nucleosome-nucleosome interactions, and ultimately chromatin structure and gene expression. Here, we investigate the role of two post-translational modifications associated with actively transcribed regions, H3K36me3 and H4K5/8/12/16ac, in the contexts of tri-nucleosome arrays that provide a tractable model system for quantitative single-molecule analysis, while enabling us to probe nucleosome-nucleosome interactions.

View Article and Find Full Text PDF

The role of histone H3 leucine 126 in fine-tuning the copper reductase activity of nucleosomes.

J Biol Chem

June 2024

Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA. Electronic address:

The copper reductase activity of histone H3 suggests undiscovered characteristics within the protein. Here, we investigated the function of leucine 126 (H3L126), which occupies an axial position relative to the copper binding. Typically found as methionine or leucine in copper-binding proteins, the axial ligand influences the reduction potential of the bound ion, modulating its tendency to accept or yield electrons.

View Article and Find Full Text PDF

Nanoplastics (NPs) and persistent organic pollutants such as polychlorinated biphenyls (PCBs) are ubiquitous aquatic pollutants. The coexistence of these pollutants in the environment emphasises the need to study their combined toxicity. NPs can cross biological membranes and act as vectors for other pollutants, whereas PCBs are known for their ability to bioaccumulate and biomagnify.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!