A 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) /1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX)-isopropanol (IPA) interfacial model was constructed to investigate the effect of temperature on cocrystal morphology. A constant volume and temperature molecular dynamics (NVT-MD) simulation was performed on the interfacial model at various temperatures (295-355 K, 20 K intervals). The surface electrostatic potential (ESP) of the CL-20/HMX cocrystal structure and IPA molecule were studied by the B3LYP method at 6-311++G (d, p) level. The surface energies, polarities, adsorption energy, mass density distribution, radial distribution function (RDF), mean square displacement (MSD) and relative changes of attachment energy were analyzed. The results show that polarities of (1 0 0) and (0 1 1) cocrystal surfaces may be more negative and affected by IPA solvent. The adsorption energy per area indicates that growth of the (1 0-2) face in IPA conditions may be more limited, while the (1 0 0) face tends to grow more freely. MSD and diffusion coefficient (D) analyses demonstrated that IPA molecules gather more easily on the cocrystal surface at lower temperatures, and hence have a larger effect on the growth of cocrystal faces. RDF analysis shows that, with the increasing of temperature, the strength of hydrogen bond interactions between cocrystal and solvent becomes stronger, being highest at 335 K for the (1 0 0) and (0 1 1) interfacial models. Results of relative changes of modified attachment energy show that (1 0 0) and (0 1 1) faces tends to be larger than other faces. Moreover, the predicted morphologies at 295 and 355 K are consistent with experimental values, proving that the CL-20/HMX-IPA interfacial model is a reasonable one for this study. Graphical Abstract Construction of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) /1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX)-isopropanol (IPA) interfacial model, analysis, and morphology prediction of cocrystal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00894-017-3525-3 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan.
Graphene-based supercapacitors have gained significant attention due to their exceptional energy storage capabilities. Despite numerous research efforts trying to improve the performance, the challenge of experimentally elucidating the nanoscale-interface molecular characteristics still needs to be tackled for device optimizations in commercial applications. To address this, we have conducted a series of experiments using substrate-free graphene field-effect transistors (SF-GFETs) and oxide-supported graphene field-effect transistors (OS-GFETs) to elucidate the graphene-electrolyte interfacial arrangement and corresponding capacitance under different surface potential states and ionic concentration environments.
View Article and Find Full Text PDFNanoscale
January 2025
Photon Science Research Center for Carbon Dioxide, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
Oxygen vacancies (V's) are of paramount importance in influencing the properties and applications of ceria (CeO). Yet, comprehending the distribution and nature of V's poses a significant challenge due to the vast number of electronic configurations and intricate many-body interactions among V's and polarons (Ce ions). In this study, we established a cluster expansion model based on first-principles calculations and statistical learning to decouple the interactions among the Ce ions and V's, thereby circumventing the limitations associated with sampling electronic configurations.
View Article and Find Full Text PDFAdv Mater
January 2025
State Key Laboratory of Fine Chemicals, Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
Phytochlorins, a class of plant-derived tetrapyrroles, show great potential as sonosensitizers in sonodynamic therapy (SDT). The development of new phytochlorin-based sonosensitizers has significantly improved SDT, yet the absence of specialized sonodynamic systems limits their clinical translation. Herein, a dedicated ultrasound system along with a detailed step-by-step sonodynamic process from in vitro to in vivo is developed to activate phytochlorin-based sonosensitizers.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Computer and Information Sciences, Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States.
Liquid phase-separating proteins can form condensates that play an important role in spatial and temporal organization of biological cells. The understanding of the mechanisms that lead to the formation of protein condensates and their interactions with other biomolecules may lead to processing routes for soft materials with tailored geometry and function. Fused in sarcoma (FUS) is an example of a nuclear protein that forms stable complexes, and recent studies have highlighted its ability to wet actin filaments and bundle them into networks.
View Article and Find Full Text PDFFoot Ankle Surg
January 2025
Biomechanics Research Laboratory, School of Mechanical & Materials Engineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175075, India. Electronic address:
Background: Tibial bone fractures in the malleolar regions are a major concern during the early postoperative period of total ankle replacement (TAR), affecting patient outcomes such as stability and recovery. Design, placement, and anatomic misalignment of implant components can contribute to malleolar fractures. The aim of this study is to understand the influence of implant design features, including keel, peg, stem, and bar type design, and bone-implant interfacial conditions on malleolar fracture following TAR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!