The urokinase receptor (uPAR) stimulates cell proliferation by forming a macromolecular complex with αvβ3 integrin and the epidermal growth factor receptor (EGFR, ErbB1 or HER1) that we name the uPAR proliferasome. uPAR transactivates EGFR, which in turn mediates uPAR-initiated mitogenic signal to the cell. EGFR activation and EGFR-dependent cell growth are blocked in the absence of uPAR expression or when uPAR activity is inhibited by antibodies against either uPAR or EGFR. The mitogenic sequence of uPAR corresponds to the D2A motif present in domain 2. NMR analysis revealed that D2A synthetic peptide has a particular three-dimensional structure, which is atypical for short peptides. D2A peptide is as effective as EGF in promoting EGFR phosphorylation and cell proliferation that were inhibited by AG1478, a specific inhibitor of the tyrosine kinase activity of EGFR. Both D2A and EGF failed to induce proliferation of NR6-EGFR-K721A cells expressing a kinase-defective mutant of EGFR. Moreover, D2A peptide and EGF phosphorylate ERK demonstrating the involvement of the MAP kinase signalling pathway. Altogether, this study reveals the importance of sequence D2A of uPAR, and the interdependence of uPAR and EGFR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11105377PMC
http://dx.doi.org/10.1007/s00018-017-2718-3DOI Listing

Publication Analysis

Top Keywords

egfr
9
upar
9
urokinase receptor
8
cell growth
8
αvβ3 integrin
8
cell proliferation
8
upar egfr
8
d2a peptide
8
egfr d2a
8
d2a
7

Similar Publications

Background: The detection rate of oncogenic human papillomaviruses (HPVs) in sinonasal squamous cell carcinomas (SNSCCs) varies among studies. The mutational landscape of SNSCCs remains poorly investigated.

Methods: We investigated the prevalence and prognostic significance of HPV infections based on p16 protein expression, HPV-DNA detection, and E6/E7 mRNA expression using immunohistochemistry, polymerase chain reaction, and in situ hybridization, respectively.

View Article and Find Full Text PDF

Target cyclooxygenase 2 (COX-2) and 5-lipoxygenase (5-LOX) inhibitors; 5-([2,5-Dihydroxybenzyl]amino)salicylamides (Compounds 1-11) were examined for potential anticancer activity, with a trial to assess the underlying possible mechanisms. Compounds were assessed at a single dose against 60 cancer cell lines panel and those with the highest activity were tested in the five-dose assay. COMPARE analysis was conducted to explore potential mechanisms underlying their biological activity.

View Article and Find Full Text PDF

Background: The effect of lowering uric acid levels on renal function in patients with diabetic kidney disease remains unclear. Previous randomized controlled trials (RCTs) have reported conflicting results regarding the effects of xanthine oxidase inhibitors on renal function. This study aimed to examine the renoprotective effects of xanthine oxidase inhibitors (febuxostat and topiroxostat) in patients with diabetic kidney disease.

View Article and Find Full Text PDF

Background: Apart from massive weight loss, metabolic and bariatric surgery, especially gastric bypass (Roux-en-Y gastric bypass [RYGB]), can cause nutritional deficiencies. Proton pump inhibitors (PPI), relatively often used after RYGB, are associated with reduced calcium absorption. We have studied the long-term impact of PPI upon calcium homeostasis among RYGB patients.

View Article and Find Full Text PDF

Background: We investigated factors associated with post-transplant growth in pediatric kidney transplant (KTx) recipients with a focus on plasma bicarbonate (HCO3) and estimated the effect of alkali treatment on growth.

Methods: In this study of the CERTAIN Registry, data were collected up to 5 years post-transplant. Generalized Additive Mixed Models were applied to assess the association between post-transplant growth and covariates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!