AI Article Synopsis

  • The researchers created a method for solvent-free reductive amination using iron pentacarbonyl, eliminating the need for an external hydrogen source.
  • This new approach does not require any catalysts or additional additives.
  • The reaction is versatile and works well with a variety of substrates, including less reactive compounds like benzophenone, and can handle different functional groups such as bromo, cyano, benzyloxy, pyrimidyl, and styryl.

Article Abstract

We developed solvent-free reductive amination without an external hydrogen source using iron pentacarbonyl as a reducing agent. Neither a catalyst nor any other additives were employed. Various types of substrates are suitable for the reaction, including those with low reactivity, e.g. benzophenone. Among others, the protocol tolerates bromo-, cyano-, benzyloxy-, pyrimidyl and styryl moieties.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7ob02795hDOI Listing

Publication Analysis

Top Keywords

reductive amination
8
iron pentacarbonyl
8
pentacarbonyl reducing
8
reducing agent
8
hydrogen-free reductive
4
amination iron
4
agent developed
4
developed solvent-free
4
solvent-free reductive
4
amination external
4

Similar Publications

Cathodic Deoxygenative Alkylation of Nitro(hetero)arenes with Organic Halides.

Org Lett

January 2025

School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529090, P. R. China.

We have realized a cathodic deoxygenative alkylation between nitro(hetero)arenes and organic halides, employing bis(pinacolato)diboron (Bpin) and LiCl as additives to trap and stabilize the generated alkyl radicals and carbanions, thereby facilitating efficient N-O cleavage and selective C-N bond formation. The protocol offers an economical method for the efficient synthesis of multiple aromatic(hetero) amines, without the need for reactive reductants and the exclusion of air and moisture. Notably, the protocol is distinguished by scalability, broad functional group compatibility, and safe and mild conditions, demonstrating practicality in the synthesis and late-stage modification of various bioactive compounds.

View Article and Find Full Text PDF

Introduction: Wound treatment is a significant health burden in any healthcare system, which requires proper management to minimize pain and prevent bacterial infections that can complicate the wound healing process.

Rationale: There is a need to develop innovative therapies to accelerate wound healing cost-effectively. Herein, two polymer-based nanofibrous systems were developed using poly-lactic-co-glycolic-acid (PLGA) and polyvinylpyrrolidone (PVP) loaded with a combination of an antibiotic (Fusidic acid, FA) and a local anesthetic (Lidocaine, LDC) via electrospinning technique for an expedited healing process by preventing bacterial infections while reducing the pain sensation.

View Article and Find Full Text PDF

Altered Pattern of Serum N-Glycome in Subarachnoid Hemorrhage and Cerebral Vasospasm.

J Clin Med

January 2025

Institute of Chemistry, Faculty of Materials Science and Engineering, University of Miskolc, 3515 Miskolc, Hungary.

: Subarachnoid hemorrhage is a serious condition caused by ruptured intracranial aneurysms, resulting in severe disability mainly in young adults. Cerebral vasospasm is one of the most common complication of subarachnoid hemorrhage; thus, active prevention is key to improve the prognosis. The glycosylation of proteins is a critical quality attribute which is reportedly altered in patients diagnosed with acute ischemic stroke.

View Article and Find Full Text PDF

Doxorubicin (DOX) is one of the most widely used chemotherapy drugs in the treatment of both solid and liquid tumors in patients of all age groups. However, it is likely to produce several side effects that include doxorubicin cardiomyopathy. Nanoparticles (NPs) can offer targeted delivery and release of the drug, potentially increasing treatment efficiency and alleviating side effects.

View Article and Find Full Text PDF

One of the most important steps in preclinical drug discovery is to demonstrate the in vivo efficacy of potential leishmanicidal compounds and good characteristics at the level of parasite killing prior to initiating human clinical trials. This paper describes the use of dehydrothyrsiferol (DT), isolated from the red alga , in a pharmaceutical form supported on Sepigel, and the in vivo efficacy against a mouse model of cutaneous leishmaniasis. Studying the ultrastructural effect of DT was also carried out to verify the suspected damage at the cellular level and determine the severity of damages produced in the homeostasis of promastigotes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!