Pharmacy information system (PIS) is becoming vital in assisting pharmacists to do their responsibilities. The aim of this study was to identify the current PIS implications in teaching hospitals affiliated with Shiraz University of Medical Science. This cross-sectional study was conducted in teaching hospitals affiliated with Shiraz University of Medical Science over the year 2016. Data were collected by observing the PIS as well as interviewing its users based on the researcher-made checklist. The checklist was prepared based on reviewing the Persian and English literature and its content validity was approved by the experts. To determine the reliability of the checklist, inter-rater reliability was used. Data were analyzed using SPSS, and hospitals were clustered using SK-means method. In this study, the least conformity to the standards was shown in smart clinical features (4.54%), pharmaceutical companies' relationship (32.6%), and optimization of drug therapy (34.6%). In contrast, the highest conformity to the standards was shown in reporting capabilities (77.3%) and entry information and input (70.4%). Medication stock checking and optimization of drug therapy were effective features that have made a distinction between hospitals and lead to 95% variance between clusters. Based on the results, the current PIS design pays less attention to clinical features. Besides, clinical information for pharmacists and outside organization relationship were not provided by the current system. Thus, emphasis should be placed on the implementation of corrective actions to eliminate the current system's deficiencies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5680619PMC
http://dx.doi.org/10.4103/japtr.JAPTR_13_17DOI Listing

Publication Analysis

Top Keywords

teaching hospitals
12
pharmacy system
8
current pis
8
hospitals affiliated
8
affiliated shiraz
8
shiraz university
8
university medical
8
medical science
8
conformity standards
8
clinical features
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!