AI Article Synopsis

  • Endolysins are enzymes produced by bacteriophages that help combat antibiotic-resistant bacteria by breaking down their cell walls.
  • The study focuses on the cell wall-binding domain of Cpl-7 endolysin, revealing its structure and how it recognizes specific bacterial targets through the CW_7 motif.
  • Findings indicate that the Cpl-7 domain can potentially bind to multiple peptidoglycan chains, suggesting its utility as a new type of antibiotic treatment.

Article Abstract

Endolysins, the cell wall lytic enzymes encoded by bacteriophages to release the phage progeny, are among the top alternatives to fight against multiresistant pathogenic bacteria; one of the current biggest challenges to global health. Their narrow range of susceptible bacteria relies, primarily, on targeting specific cell-wall receptors through specialized modules. The cell wall-binding domain of Cpl-7 endolysin, made of three CW_7 repeats, accounts for its extended-range of substrates. Using as model system the cell wall-binding domain of Cpl-7, here we describe the molecular basis for the bacterial cell wall recognition by the CW_7 motif, which is widely represented in sequences of cell wall hydrolases. We report the crystal and solution structure of the full-length domain, identify N-acetyl-D-glucosaminyl-(β1,4)-N-acetylmuramyl-L-alanyl-D-isoglutamine (GMDP) as the peptidoglycan (PG) target recognized by the CW_7 motifs, and characterize feasible GMDP-CW_7 contacts. Our data suggest that Cpl-7 cell wall-binding domain might simultaneously bind to three PG chains, and also highlight the potential use of CW_7-containing lysins as novel anti-infectives.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5705596PMC
http://dx.doi.org/10.1038/s41598-017-16392-4DOI Listing

Publication Analysis

Top Keywords

cell wall-binding
16
cell wall
12
wall-binding domain
12
cpl-7 cell
8
domain cpl-7
8
cell
7
deciphering cpl-7
4
wall-binding
4
wall-binding repeats
4
repeats recognize
4

Similar Publications

Diversity of Endolysin Domain Architectures in Bacteriophages Infecting Bacilli.

Biomolecules

December 2024

Laboratory of Bacteriophage Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Prospect Nauki, 5, 142290 Pushchino, Russia.

The increasing number of antibiotic-resistant bacterial pathogens is a serious problem in medicine. Endolysins are bacteriolytic enzymes of bacteriophages, and a promising group of enzymes with antibacterial properties. Endolysins of bacteriophages infecting Gram-positive bacteria have a modular domain organization.

View Article and Find Full Text PDF

Characterization of VldE (Spr1875), a Pneumococcal Two-State l,d-Endopeptidase with a Four-Zinc Cluster in the Active Site.

ACS Catal

December 2024

Department of Crystallography and Structural Biology, Consejo Superior de Investigaciones Científicas, Instituto de Química-Física "Blas Cabrera", Madrid 28006, Spain.

Remodeling of the pneumococcal cell wall, carried out by peptidoglycan (PG) hydrolases, is imperative for maintaining bacterial cell shape and ensuring survival, particularly during cell division or stress response. The protein Spr1875 plays a role in stress response, both regulated by the VicRK two-component system (analogous to the WalRK TCS found in Firmicutes). Modular Spr1875 presents a putative cell-wall binding module at the N-terminus and a catalytic C-terminal module (Spr1875) connected by a long linker.

View Article and Find Full Text PDF

Staphylococcus aureus causes a wide range of infections, from mild skin conditions to severe, life-threatening diseases. Bacteriophage endolysins exhibit a selective capacity to degrade the peptidoglycan layer of Gram-positive bacteria, making promising biotherapeutic agents against antibiotic-resistant infections. PlyGRCS, a specific endolysin derived from S.

View Article and Find Full Text PDF
Article Synopsis
  • Endolysins from bacteriophages can break down bacterial cell walls and are used in various industries to combat biofilms and infections.
  • The study focused on understanding how single-domain endolysins bind to peptidoglycan, using computational methods like molecular docking and bioinformatics, which are easier compared to experimental methods.
  • The research found that Autodock Vina and the 3D-RISM module supported prior findings on the binding mechanism of a specific endolysin, showing that both computational tools effectively predicted the binding and interaction of endolysins with peptidoglycan.
View Article and Find Full Text PDF

A major growing concern in the human and animal health sector is the emergence of antibiotic-resistant pathogenic bacteria due to the indiscriminate use of antibiotics. The exogenous application of bacteriophage endolysins causes abrupt lysis of the bacterial cell wall, which computes them as alternatives to antibiotics. Although naturally occurring endolysins may display limitations in solubility, lytic activity, and narrow lytic spectrum, novel strategies like developing chimeric endolysins and using endolysins in synergism with other antimicrobial agents are required to improve the lytic activity of natural endolysins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!