Cellular reprogramming is a dedifferentiation process during which cells continuously undergo phenotypical remodeling. Although the genetic and biochemical details of this remodeling are fairly well understood, little is known about the change in cell mechanical properties during the process. In this study, we investigated changes in the mechanical phenotype of murine fetal neural progenitor cells (fNPCs) during reprogramming to induced pluripotent stem cells (iPSCs). We find that fNPCs become progressively stiffer en route to pluripotency, and that this stiffening is mirrored by iPSCs becoming more compliant during differentiation towards the neural lineage. Furthermore, we show that the mechanical phenotype of iPSCs is comparable with that of embryonic stem cells. These results suggest that mechanical properties of cells are inherent to their developmental stage. They also reveal that pluripotent cells can differentiate towards a more compliant phenotype, which challenges the view that pluripotent stem cells are less stiff than any cells more advanced developmentally. Finally, our study indicates that the cell mechanical phenotype might be utilized as an inherent biophysical marker of pluripotent stem cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/dev.155218 | DOI Listing |
Cardiovasc Revasc Med
January 2025
Department of Cardiovascular disease, Henry Ford, Detroit, MI, USA.
Introduction: Cardiogenic shock (CS) is marked by substantial morbidity and mortality. The two major CS etiologies include heart failure (HF) and acute myocardial infarction (AMI). The utilization trends of mechanical circulatory support (MCS) and their clinical outcomes are not well described.
View Article and Find Full Text PDFAdv Drug Deliv Rev
January 2025
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 637459 Singapore; Critical Analytics for Manufacturing Personalized-Medicine Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology, Campus for Research Excellence and Technological Enterprise 138602 Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University 308232 Singapore; School of Materials Science and Engineering 639798 Singapore; National Neuroscience Institute, 11 Jalan Tan Tock Seng 308433 Singapore. Electronic address:
Combinatorial treatments integrating cells and biomolecules within scaffolds have been investigated to address the multifactorial nature of spinal cord injury (SCI). Current regenerative treatments have been ineffective as they do not consider the spatial positions of various cell types to effectively form functional neural pathways. Emulating the complex heterogeneity of cells in the native spinal cord requires translating the existing biological understanding of spatial patterning in neural development, as well as the influence of biomolecule and mechanical patterning on regional specification and axonal regeneration, to engineer a scaffold for spinal cord regeneration.
View Article and Find Full Text PDFBiomed Mater
January 2025
Department of Plastic Surgery, Shanghai Tenth People's Hospital, Tongji University, No. 301, Middle Yanchang Road, Shanghai, 200011, CHINA.
The reconstruction of large-sized soft tissue defects remains a substantial clinical challenge, with adipose tissue engineering emerging as a promising solution. The acellular dermal matrix (ADM), known for its intricate spatial arrangement and active cytokine involvement, is widely employed as a scaffold in soft tissue engineering. Since ADM shares high similarity with decellularized adipose matrix, it holds potential as a substitute for adipose tissue.
View Article and Find Full Text PDFActa Orthop Traumatol Turc
December 2024
Department of Orthopedics and Traumatology, Acibadem Mehmet Ali Aydinlar University Faculty of Medicine, Istanbul, Türkiye.
Objective: This study aimed to investigate the distribution of knee phenotypes based on the CPAK classification in healthy nonarthritic subjects and osteoarthritic patients in Türkiye.
Methods: Radiological EOS analysis of nonarthritic 1172 knees and osteoarthritic 571 knees was evaluated to clarify the distribution of CPAK classification. The knees were categorized into 9 subgroups according to the arithmetic hip-knee-ankle (aHKA) angle and joint-line obliquity (JLO).
Int J Syst Evol Microbiol
January 2025
Department of Life Sciences, University of Coimbra, CEMMPRE, ARISE, Coimbra, Portugal.
Three bacterial strains, designated FZUC8N2.13, FBOR7N2.3 and FZUR7N2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!