Epidermal growth factor receptor kinase is implicated in cancer development due to either overexpression or activation variants in its functional intracellular kinase domain. Threonine to methionine (Thr 790 Met) is one such variant observed commonly in patients showing resistance to kinase inhibitor drug Erlotinib. Two mechanisms for resistance have been proposed (1) steric hindrance and (2) enhanced binding to ATP. In this study, we employed molecular dynamics simulations and studied both the mechanisms. Extensive simulations and free energy of binding analyses has shown that steric hindrance does not explain appropriately the mechanism for resistance against Erlotinib therapy for this variant. It has been observed that conformational switching from an intermediate intrinsically disordered C-helix conformation is required for completion of the kinase's catalytic cycle. Our study substantiates that T790M variant has greater tendency for early transition to this intrinsically disordered C-helix intermediate state. We propose that enhanced catalytic efficiency in addition to enhanced ATP binding explains mechanism of T790M resistance to drug Erlotinib.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2017.1411293DOI Listing

Publication Analysis

Top Keywords

drug erlotinib
12
t790m variant
8
epidermal growth
8
growth factor
8
factor receptor
8
receptor kinase
8
variant observed
8
steric hindrance
8
intrinsically disordered
8
disordered c-helix
8

Similar Publications

Five phenolic Schiff bases (-) incorporating a fragment of methanesulfonamide were synthesized and evaluated for their efficacy as antitumor agents. Compounds and demonstrated the most potent antitumor action, with a positive cytotoxic effect (PCE) of 54/59 and 59/59 and a mean growth percentage (MG%) of 67.3% and 19.

View Article and Find Full Text PDF

Erlotinib Improves the Response of Glioblastoma Cells Resistant to Photodynamic Therapy.

Brain Sci

November 2024

Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), INBIAS (CONICET-UNRC), Río Cuarto 5800, Argentina.

Glioblastoma (GBM) is the most common and deadly type of brain cancer in adults. Dysregulation of receptor tyrosine kinase pathways, such as the epidermal growth factor receptor (EGFR), contributes to therapeutic resistance. Drugs that inhibit tyrosine kinase activity and monoclonal antibodies against EGFR are strategies used in clinical trials.

View Article and Find Full Text PDF

Structure-based design of new anticancer N3-Substituted quinazolin-4-ones as type I ATP-competitive inhibitors targeting the deep hydrophobic pocket of EGFR.

Comput Biol Med

January 2025

Drug Design and Discovery Lab, Helmy Institute of Medical Sciences, Zewail City of Science, Technology and Innovation, Giza, 12578, Egypt; Biomedical Sciences Program, University of Science and Technology, Zewail City of Science, Technology and Innovation, Giza, 12578, Egypt. Electronic address:

Epidermal growth factor receptor (EGFR) is amongst the earliest targeted kinases by small-molecule inhibitors for the management of EGFR-positive cancer types. While a few inhibitors are granted FDA approval for clinical use, discovery of new inhibitors is still of merit to enhance ligand-binding stability and subsequent enzyme inhibition. Thus, a structure-based design approach was adopted to devise a new series of twenty-nine N3-substituted quinazolin-4-ones as type I ATP-competitive inhibitors targeting the deep hydrophobic pocket of EGFR.

View Article and Find Full Text PDF

The search for effective anti-cancer therapies has led to the exploration of dual inhibition strategies targeting multiple key molecular pathways. In this study, we aimed to design a novel candidate capable of dual inhibition targeting both EGFR (Epidermal Growth Factor Receptor) and PARP-1 (poly(ADP-ribose)polymerase-1), two crucial proteins implicated in cancer progression and resistance mechanisms. Through molecular hybridization and structure-based drug design approaches, we synthesized a series of compounds based on spirooxindole with triazole scaffolds with the potential for dual EGFR and PARP-1 inhibition.

View Article and Find Full Text PDF

The study by Downs and colleagues targets patients with non-muscle-invasive bladder cancer (NMIBC) to explore secondary/tertiary cancer prevention strategies. Utilizing a "window-of-opportunity" design, erlotinib was evaluated for its effect on EGFR phosphorylation, although the unconventional dosing regimen failed to demonstrate efficacy. New opportunities in NMIBC prevention include targeting FGFR3 mutations with emerging FGFR inhibitors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!