Proteins are essential for almost all physiological processes of life. They serve a myriad of functions which are as varied as their unique amino acid sequences and their corresponding three-dimensional structures. To fulfill their tasks, most proteins depend on stable physical associations, in the form of protein complexes that evolved between themselves and other proteins. In solution (condensed phase), proteins and/or protein complexes are in constant energy exchange with the surrounding solvent. Albeit methods to describe in-solution thermodynamic properties of proteins and of protein complexes are well established and broadly applied, they do not provide a broad enough access to life-science experimentalists to study all their proteins' properties at leisure. This leaves great desire to add novel methods to the analytical biochemist's toolbox. The development of electrospray ionization created the opportunity to characterize protein higher order structures and protein complexes rather elegantly by simultaneously lessening the need of sophisticated sample preparation steps. Electrospray mass spectrometry enabled us to translate proteins and protein complexes very efficiently into the gas phase under mild conditions, retaining both, intact protein complexes, and gross protein structures upon phase transition. Moreover, in the environment of the mass spectrometer (gas phase, in vacuo), analyte molecules are free of interactions with surrounding solvent molecules and, therefore, the energy of inter- and intramolecular forces can be studied independently from interference of the solvating environment. Provided that gas phase methods can give information which is relevant for understanding in-solution processes, gas phase protein structure studies and/or investigations on the characterization of protein complexes has rapidly gained more and more attention from the bioanalytical scientific community. Recent reports have shown that electrospray mass spectrometry provides direct access to six prime protein complex properties: stabilities, compositions, binding surfaces (epitopes), disassembly processes, stoichiometries, and thermodynamic parameters.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1469066717722256DOI Listing

Publication Analysis

Top Keywords

protein complexes
32
gas phase
20
protein
13
characterization protein
8
protein structures
8
structures protein
8
complexes
8
phase proteins
8
surrounding solvent
8
proteins protein
8

Similar Publications

Analyzing microbial samples remains computationally challenging due to their diversity and complexity. The lack of robust de novo protein function prediction methods exacerbates the difficulty in deriving functional insights from these samples. Traditional prediction methods, dependent on homology and sequence similarity, often fail to predict functions for novel proteins and proteins without known homologs.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a fatal disease defined by a progressive decline in lung function due to scarring and accumulation of extracellular matrix (ECM) proteins. The SOCS (Suppressor Of Cytokine Signaling) domain is a 40 amino acid conserved domain known to form a functional ubiquitin ligase complex targeting the Von Hippel Lindau (VHL) protein for proteasomal degradation. Here we show that the SOCS conserved domain operates as a molecular tool, to disrupt collagen and fibronectin fibrils in the ECM associated with fibrotic lung myofibroblasts.

View Article and Find Full Text PDF

The chromatin remodeling factor OsINO80 promotes H3K27me3 and H3K9me2 deposition and maintains TE silencing in rice.

Nat Commun

December 2024

State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, PR China.

The INO80 chromatin remodeling complex plays a critical role in shaping the dynamic chromatin environment. The diverse functions of the evolutionarily conserved INO80 complex have been widely reported. However, the role of INO80 in modulating the histone variant H2A.

View Article and Find Full Text PDF

Taking advantage of the good mechanical strength of expanded Drosophila brains and to tackle their relatively large size that can complicate imaging, we apply potassium (poly)acrylate-based hydrogels for expansion microscopy (ExM), resulting in a 40x plus increased resolution of transgenic fluorescent proteins preserved by glutaraldehyde fixation in the nervous system. Large-volume ExM is realized by using an axicon-based Bessel lightsheet microscope, featuring gentle multi-color fluorophore excitation and intrinsic optical sectioning capability, enabling visualization of Tm5a neurites and L3 lamina neurons with photoreceptors in the optic lobe. We also image nanometer-sized dopaminergic neurons across the same intact iteratively expanded Drosophila brain, enabling us to measure the 3D expansion ratio.

View Article and Find Full Text PDF

Warfarin is the most widely used oral anticoagulant in clinical practice. The cytochrome P450 2C9 (CYP2C9), vitamin K epoxide reductase complex 1 (VKORC1), and cytochrome P450 4F2 (CYP4F2) genotypes are associated with warfarin dose requirements in China. Accurate genotyping is vital for obtaining reliable genotype-guided warfarin dosing information.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!