Diet-specific trophic transfer of mercury in tilapia (Oreochromis niloticus): Biodynamic perspective.

Environ Pollut

Division of Life Science, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong; Marine Environmental Laboratory, HKUST Shenzhen Research Institute, Shenzhen 518057, China. Electronic address:

Published: March 2018

This study tested the hypothesis that different diets could modulate mercury (Hg) trophic transfer by concurrently altering the transfer of energy (in terms of growth) and transfer of Hg (in terms of biodynamic process). Firstly, we conducted a 40-d laboratory bioaccumulation experiment, in which tilapia (Oreochromis niloticus) was exposed to inorganic mercury (Hg[II]) and methylmercury (MeHg) via feeding on three distinct diets (macrophyte, freshwater shrimp, and commercial pellets) at a fixed ingestion rate of 0.065 g g d. During the dietary exposure period, tilapia exhibited Hg species- and diet-dependent Hg trophic transfer patterns and diet-specific growth rates. We then employed a biokinetic model to assess how diet-specific biodynamics and/or diet-specific growth rates modulated the overall Hg bioaccumulation and trophic transfer. The diet-specific assimilation efficiencies (AEs) were monitored using radioisotope technique, and the determined AEs of Hg(II) (8.6%-29.7%) varied by 3.5 times among diets whereas the MeHg AEs (94.4%-97.1%) were not affected. The biokinetic modeling further revealed that Hg(II) trophic transfer in tilapia was controlled by the diet-specific AEs, while MeHg trophic transfer was governed by the diet-specific growth rates. Specifically, a diet-derived high growth rate reduced the MeHg trophic transfer in pellets-fed tilapia, and the overall accumulated MeHg level in fish was under the control of both somatic growth dilution and dietary MeHg influx. Moreover, we observed that the Hg levels (mainly as MeHg) in fast-growing farmed tilapia were significantly lower than wild-living tilapia after 100 d exposure in the field, attributed to somatic growth dilution (SGD). Both the laboratory and field study therefore demonstrated the importance of diet-derived SGD in modulating mercury trophic transfer in aquatic food webs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2017.11.071DOI Listing

Publication Analysis

Top Keywords

trophic transfer
32
diet-specific growth
12
growth rates
12
transfer
10
tilapia oreochromis
8
oreochromis niloticus
8
mercury trophic
8
mehg trophic
8
somatic growth
8
growth dilution
8

Similar Publications

The presence of the long-lived radionuclides Cs and Sr in ecosystems is a major environmental concern because bioavailable forms of the radionuclides are readily transferred to living organisms. The present study investigated how holometabolous insect development influences the fate of radiocaesium and radiostrontium by examining the behaviour of tracers (Cs and Sr) and stable elements during the larval feeding stage (21-23 days old), the pupal stage, and the adult stage. We aimed to evaluate the degree to which an herbivore or a detritivore food chain could serve as transfer pathways to higher trophic levels in terms of accumulation potential, and during which stage of development the accumulation potential is highest.

View Article and Find Full Text PDF

Background: Seawater microbes (bacteria and archaea) play essential roles in coral reefs by facilitating nutrient cycling, energy transfer, and overall reef ecosystem functioning. However, environmental disturbances such as degraded water quality and marine heatwaves, can impact these vital functions as seawater microbial communities experience notable shifts in composition and function when exposed to stressors. This sensitivity highlights the potential of seawater microbes to be used as indicators of reef health.

View Article and Find Full Text PDF

Despite the fact that the UN Stockholm Convention on persistent organic pollutants specifically acknowledges that Arctic ecosystems and Indigenous communities are particularly at risk due to biomagnification of contaminants in traditional foods, the bioconcentration factor (BCF) of substances in fish remains the preferred metric for identifying the biomagnification potential of organic substances. The BCF measures uptake of substances from water in water-breathing organisms, but not biomagnification of contaminants from food sources. The purpose of this study is to investigate how the biomagnification factor (BMF) can be used in bioaccumulation assessments.

View Article and Find Full Text PDF

Emerging and legacy organophosphate flame retardants in the tropical estuarine food web: Do they exhibit similar bioaccumulation patterns, trophic partitioning and dietary exposure?

Water Res X

May 2025

Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.

Emerging organophosphate flame retardants (E-OPFRs) are a new class of pollutants that have attracted increasing attention, but their bioaccumulation patterns and trophodynamic behaviors in aquatic food webs still need to be validated by comparison with legacy OPFRs (L-OPFRs). In this study, we simultaneously investigated the bioaccumulation, trophic transfer, and dietary exposure of 8 E-OPFRs and 10 L-OPFRs in a tropical estuarine food web from Hainan Island, China. Notably, the ΣL-OPFRs concentration (16.

View Article and Find Full Text PDF

Multi-interacting global-change drivers reduce photosynthetic and resource use efficiencies and prompt a microzooplankton-phytoplankton uncoupling in estuarine communities.

Mar Environ Res

January 2025

Estación de Fotobiología Playa Unión (EFPU), Casilla de Correos 15, 9103, Rawson, Chubut, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.

Plankton communities are subjected to multiple global change drivers; however, it is unknown how the interplay between them deviates from predictions based on single-driver studies, in particular when trophic interactions are explicitly considered. We investigated how simultaneous manipulation of temperature, pH, nutrient availability and solar radiation quality affects the carbon transfer from phytoplankton to herbivorous protists and their potential consequences for ecosystem functioning. Our results showed that multiple interacting global-change drivers reduced the photosynthetic (gross primary production-to-electron transport rates ratios, from 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!