An atomic force microscopy mode for nondestructive electromechanical studies and its application to diphenylalanine peptide nanotubes.

Ultramicroscopy

ITMO University, St. Petersburg 197101, Russia; CICECO-Aveiro Institute of Materials and Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal. Electronic address:

Published: February 2018

Nondestructive scanning probe microscopy of fragile nanoscale objects is currently in increasing need. In this paper, we report a novel atomic force microscopy mode, HybriD Piezoresponse Force Microscopy (HD-PFM), for simultaneous nondestructive analysis of piezoresponse as well as of mechanical and dielectric properties of nanoscale objects. We demonstrate this mode in application to self-assembled diphenylalanine peptide micro- and nanotubes formed on a gold-covered substrate. Nondestructive in- and out-of-plane piezoresponse measurements of tubes of less than 100 nm in diameter are demonstrated for the first time. High-resolution maps of tube elastic properties were obtained simultaneously with HD-PFM. Analysis of the measurement data combined with the finite-elements simulations allowed quantification of tube Young's modulus. The obtained value of 29 ± 1 GPa agrees well with the data obtained with other methods and reported in the literature.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultramic.2017.11.009DOI Listing

Publication Analysis

Top Keywords

force microscopy
12
atomic force
8
microscopy mode
8
diphenylalanine peptide
8
nanoscale objects
8
microscopy
4
nondestructive
4
mode nondestructive
4
nondestructive electromechanical
4
electromechanical studies
4

Similar Publications

Developing scaffolds supporting functional cell attachment and tissue growth is critical in basic cell research, tissue engineering, and regenerative medicine approaches. Though poly(ethylene glycol) (PEG) and its derivatives are attractive for hydrogels and scaffold fabrication, they often require bioactive modifications due to their bioinert nature. In this work, biomimetic synthesized conductive polypyrrole-poly(3,4-ethylenedioxythiophene) copolymer doped with poly(styrenesulfonate) (PPy-PEDOT:PSS) was used as a biocompatible coating for poly(ethylene glycol) diacrylate (PEGDA) hydrogel to support neuronal and muscle cells' attachment, activity, and differentiation.

View Article and Find Full Text PDF

Extracellular vesicles-derived miR-21 as a biomarker for early diagnosis and tumor activity in breast cancer subtypes.

Biomark Res

January 2025

Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena, Modena, 41124, Italy.

Emerging evidence highlights the key role of microRNA (miR)-21 in cell-to-cell communication and tumorigenesis. However, limited knowledge exists on the levels and clinical meaning of miR-21 in extracellular vesicles (EVs) of patients with breast cancer (BC). We assessed EV-derived miR-21 levels in one hundred women: 30 with early BC (EBC), 30 with metastatic BC on treatment progression (MBC), 30 cancer survivors on follow-up (FU) and 10 healthy donors (HD) as age- and body mass index (BMI)-matched controls.

View Article and Find Full Text PDF

Poly(lactic acid)-based materials with enhanced gas permeability for modified atmosphere packaging of Chinese bayberry.

Int J Biol Macromol

January 2025

College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia 010010, China. Electronic address:

Biodegradable plastics are increasingly utilized in packaging, driven by green chemistry and environmental responsibility. Among them, poly(L-lactic acid) (PLLA) stands out due to its biodegradability and biocompatibility. However, its limited gas permeability and selectivity hinder its application in produce preservation.

View Article and Find Full Text PDF

Structure and properties of polysaccharides from tetrasporophytes of Mazzaella parksii.

Int J Biol Macromol

January 2025

G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 100 Let Vladivostoku Prosp., 159, 690022 Vladivostok, Russian Federation.

The structure and anti-SARS-CoV-2 activity of sulfated polysaccharides (Mzpt) obtained in high yield (60 %) from tetrasporophytes of Mazzaella parksii were studied. Stepwise fractionation with KCl showed that Mzpt consisted of eight (MzptF1-MzptF8) carrageenans fractions, differing in structure and molecular weight. The yield of non-gelling MzptF8 was 58.

View Article and Find Full Text PDF

The creation of polymer composites with better performance is a crucial thing. The cellulosic filler material gain popularity in polymer composites. In this study, aquatic plant Pistia stratiote leaves were used as a raw material for cellulose extraction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!