A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

NRPS-Derived Isoquinolines and Lipopetides Mediate Antagonism between Plant Pathogenic Fungi and Bacteria. | LitMetric

Bacterial-fungal interactions are presumed to be mediated chiefly by small-molecule signals; however, little is known about the signaling networks that regulate antagonistic relationships between pathogens. Here, we show that the ralstonins, lipopeptides produced by the plant pathogenic bacteria Ralstonia solanacearum, interfere with germination of the plant-pathogenic fungus Aspergillus flavus by down-regulating expression of a cryptic biosynthetic gene cluster (BGC), named imq. Comparative metabolomic analysis of overexpression strains of the transcription factor ImqK revealed imq-dependent production of a family of tripeptide-derived alkaloids, the imizoquins. These alkaloids are produced via a nonribosomal peptide synthetase- (NRPS-)derived tripeptide and contain an unprecedented tricyclic imidazo[2,1-a]isoquinoline ring system. We show that the imizoquins serve a protective role against oxidative stress that is essential for normal A. flavus germination. Supplementation of purified imizoquins restored wildtype germination to a ΔimqK A. flavus strain and protected the fungus from ROS damage. Whereas the bacterial ralstonins retarded A. flavus germination and suppressed expression of the imq cluster, the fungal imizoquins in turn suppressed growth of R. solanacearum. We suggest such reciprocal small-molecule-mediated antagonism is a common feature in microbial encounters affecting pathogenicity and survival of the involved species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5922988PMC
http://dx.doi.org/10.1021/acschembio.7b00731DOI Listing

Publication Analysis

Top Keywords

plant pathogenic
8
flavus germination
8
nrps-derived isoquinolines
4
isoquinolines lipopetides
4
lipopetides mediate
4
mediate antagonism
4
antagonism plant
4
pathogenic fungi
4
fungi bacteria
4
bacteria bacterial-fungal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!