Ensemble machine learning and forecasting can achieve 99% uptime for rural handpumps.

PLoS One

Mechanical Engineering, Portland State University, Portland, Oregon, United States of America.

Published: December 2017

Broken water pumps continue to impede efforts to deliver clean and economically-viable water to the global poor. The literature has demonstrated that customers' health benefits and willingness to pay for clean water are best realized when clean water infrastructure performs extremely well (>99% uptime). In this paper, we used sensor data from 42 Afridev-brand handpumps observed for 14 months in western Kenya to demonstrate how sensors and supervised ensemble machine learning could be used to increase total fleet uptime from a best-practices baseline of about 70% to >99%. We accomplish this increase in uptime by forecasting pump failures and identifying existing failures very quickly. Comparing the costs of operating the pump per functional year over a lifetime of 10 years, we estimate that implementing this algorithm would save 7% on the levelized cost of water relative to a sensor-less scheduled maintenance program. Combined with a rigorous system for dispatching maintenance personnel, implementing this algorithm in a real-world program could significantly improve health outcomes and customers' willingness to pay for water services.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5705089PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0188808PLOS

Publication Analysis

Top Keywords

ensemble machine
8
machine learning
8
willingness pay
8
clean water
8
implementing algorithm
8
water
6
learning forecasting
4
forecasting achieve
4
achieve 99%
4
uptime
4

Similar Publications

Aims: Few personalized monitoring models for valproic acid (VPA) in pediatric epilepsy patients (PEPs) incorporate machine learning (ML) algorithms. This study aimed to develop an ensemble ML model for VPA monitoring to enhance clinical precision of VPA usage.

Methods: A dataset comprising 366 VPA trough concentrations from 252 PEPs, along with 19 covariates and the target variable (VPA trough concentration), was refined by Spearman correlation and multicollinearity testing (366 × 11).

View Article and Find Full Text PDF

Halophilic proteins possess unique structural properties and show high stability under extreme conditions. This distinct characteristic makes them invaluable for application in various aspects such as bioenergy, pharmaceuticals, environmental clean-up, and energy production. Generally, halophilic proteins are discovered and characterized through labor-intensive and time-consuming wet lab experiments.

View Article and Find Full Text PDF

Introduction: Motor Imagery (MI) Electroencephalography (EEG) signals are non-stationary and dynamic physiological signals which have low signal-to-noise ratio. Hence, it is difficult to achieve high classification accuracy. Although various machine learning methods have already proven useful to that effect, the use of many features and ineffective EEG channels often leads to a complex structure of classifier algorithms.

View Article and Find Full Text PDF

Objectives: To develop and compare machine learning models to classify individuals vulnerable to Hwa-byung (HB) using an existing HB personality scale and to evaluate the efficacy of these models in predicting HB vulnerability.

Methods: We analyzed data from 500 Korean adults (aged 19-44) using HB personality and symptom scales. We used various machine learning techniques, including the random forest classifier (RFC), XGBoost classifier, logistic regression, and their ensemble method (RFC-XGC-LR).

View Article and Find Full Text PDF

Purpose: Deep learning-based radiomics techniques have the potential to aid specialists and physicians in performing decision-making in COVID-19 scenarios. Specifically, a Deep Learning (DL) ensemble model is employed to classify medical images when addressing the diagnosis during the classification tasks for COVID-19 using chest X-ray images. It also provides feasible and reliable visual explicability concerning the results to support decision-making.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!