Quality of Irrigation Water Affects Soil Functionality and Bacterial Community Stability in Response to Heat Disturbance.

Appl Environ Microbiol

Department of Soil, Water, and Environmental Sciences, Agricultural Research Organization, Volcani Center, Beit Dagan, Israel

Published: February 2018

Anthropogenic activities alter the structure and function of a bacterial community. Furthermore, bacterial communities structured by the conditions the anthropogenic activities present may consequently reduce their stability in response to an unpredicted acute disturbance. The present mesocosm-scale study exposed soil bacterial communities to different irrigation water types, including freshwater, fertilized freshwater, treated wastewater, and artificial wastewater, and evaluated their response to a disturbance caused by heat. These effectors may be considered deterministic and stochastic forces common in agricultural operations of arid and semiarid regions. Bacterial communities under conditions of high mineral and organic carbon availability (artificial wastewater) differed from the native bacterial community and showed a proteobacterial dominance. These bacterial communities had a lower resistance to the heat treatment disturbance than soils under conditions of low resource availability (high-quality treated wastewater or freshwater). The latter soil bacterial communities showed a higher abundance of operational taxonomic units (OTUs) classified as These results were elucidated by soil under conditions of high resource availability, which lost higher degrees of functional potential and had a greater bacterial community composition change. However, the functional resilience, after the disturbance ended, was higher under a condition of high resource availability despite the bacterial community composition shift and the decrease in species richness. The functional resilience was directly connected to the high growth rates of certain and proteobacterial groups. A high stability was found in samples that supported the coexistence of both resistant OTUs and fast-growing OTUs. This report presents the results of a study employing a hypothesis-based experimental approach to reveal the forces involved in determining the stability of a soil bacterial community to disturbance. The resultant postdisturbance bacterial community composition dynamics and functionality were analyzed. The paper demonstrates the relatedness of community structure and stability under cultivation conditions prevalent in an arid area under irrigation with water of different qualities. The use of common agricultural practices to demonstrate these features has not been described before. The combination of a fundamental theoretical issue in ecology with common and concerning disturbances caused by agricultural practice makes this study unique. Furthermore, the results of the present study have applicable importance regarding soil conservation, as it enables a better characterization and monitoring of stressed soil bacterial communities and possible intervention to reduce the stress. It will also be of valued interest in coming years, as fresh water scarcity and the use of alternative water sources are expected to rise globally.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5795067PMC
http://dx.doi.org/10.1128/AEM.02087-17DOI Listing

Publication Analysis

Top Keywords

bacterial community
28
bacterial communities
24
soil bacterial
16
bacterial
13
irrigation water
12
resource availability
12
community composition
12
community
8
stability response
8
anthropogenic activities
8

Similar Publications

Enhancing Miscanthus floridulus remediation of soil cadmium using Beauveria bassiana FE14: Plant growth promotion and microbial interactions.

Ecotoxicol Environ Saf

January 2025

College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; Yuelushan Laboratory, Changsha 410125, China. Electronic address:

Soil heavy metal pollution presents substantial risks to food security and human health. This study focused on the efficiency of plant growth-promoting fungus-Beauveria bassiana FE14 and Miscanthus floridulus on the synergistic remediation of soil Cd contamination. Results revealed that B.

View Article and Find Full Text PDF

Dysuria, a feeling of pain or discomfort during urination, is often caused by urinary tract infection but can also be due to sexually transmitted infection, bladder irritants, skin lesions, and some chronic pain conditions. History is most often useful for finding signs of sexually transmitted infection, complicated infections, lower urinary symptoms in males, and noninfectious causes. Most patients presenting with dysuria should have a urinalysis performed.

View Article and Find Full Text PDF

Composition and functional diversity of soil and water microbial communities in the rice-crab symbiosis system.

PLoS One

January 2025

Department of Earth and Environmental Sciences, California State University, Fresno, CA, United States of America.

Rice-crab co-culture is an environmentally friendly agricultural and aquaculture technology with high economic and ecological value. In order to clarify the structure and function of soil and water microbial communities in the rice-crab symbiosis system, the standard rice-crab field with a ring groove was used as the research object. High-throughput sequencing was performed with rice field water samples to analyze the species and abundance differences of soil bacteria and fungi.

View Article and Find Full Text PDF

Certain coral individuals exhibit enhanced resistance to thermal bleaching, yet the specific microbial assemblages and their roles in these phenotypes remain unclear. We compared the microbial communities of thermal bleaching-resistant (TBR) and thermal bleaching-sensitive (TBS) corals using metabarcoding and metagenomics. Our multidomain approach revealed stable distinct microbial compositions between thermal phenotypes.

View Article and Find Full Text PDF

Subsidy-stress gradients offer a useful framework for understanding ecological responses to perturbation and may help inform ecological metrics in highly modified systems. Historic, region-wide shifts from bottomland hardwood forest to row crop agriculture can cause positively skewed impact gradients in alluvial plain ecoregions, resulting in tolerant organisms that typically exhibit a subsidy response (increased abundance in response to environmental stressors) shifting to a stress response (declining abundance at higher concentrations). As a result, observed biological tolerance in modified ecosystems may differ from less modified regions, creating significant challenges for detecting biological responses to restoration efforts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!