Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Glioblastoma Multiforme is the deadliest type of brain tumor and is characterized by very poor prognosis with a limited overall survival. Current optimal therapeutic approach has essentially remained unchanged for more than a decade, consisting in maximal surgical resection followed by radiotherapy plus temozolomide.
Main Body: Such a dismal patient outcome represents a compelling need for innovative and effective therapeutic approaches. Given the development of new drugs is a process presently characterized by an immense increase in costs and development time, drug repositioning, finding new uses for existing approved drugs or drug repurposing, re-use of old drugs when novel molecular findings make them attractive again, are gaining significance in clinical pharmacology, since it allows faster and less expensive delivery of potentially useful drugs from the bench to the bedside. This is quite evident in glioblastoma, where a number of old drugs is now considered for clinical use, often in association with the first-line therapeutic intervention. Interestingly, most of these medications are, or have been, widely employed for decades in non-neoplastic pathologies without relevant side effects. Now, the refinement of their molecular mechanism(s) of action through up-to-date technologies is paving the way for their use in the therapeutic approach of glioblastoma as well as other cancer types.
Short Conclusion: The spiraling costs of new antineoplastic drugs and the long time required for them to reach the market demands a profoundly different approach to keep lifesaving therapies affordable for cancer patients. In this context, repurposing can represent a relatively inexpensive, safe and fast approach to glioblastoma treatment. To this end, pros and cons must be accurately considered.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5704391 | PMC |
http://dx.doi.org/10.1186/s13046-017-0642-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!