Cgl2 plays an essential role in cuticular wax biosynthesis in cabbage (Brassica oleracea L. var. capitata).

BMC Plant Biol

Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, MOA, the Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.

Published: November 2017

Background: The aerial parts of most land plants are covered with cuticular wax which is important for plants to avoid harmful factors. There is still no cloning study about wax synthesis gene of the alcohol-forming pathway in Brassica species.

Results: Scanning electron microscopy (SEM) showed that, compared with wild type (WT), wax crystal are severely reduced in both the adaxial and abaxial sides of cabbage (Brassica oleracea L. var. capitata L.) leaves from the LD10GL mutant. Genetic analysis results revealed that the glossy trait of LD10GL is controlled by a single recessive gene, and fine mapping results revealed that the target gene Cgl2 (Cabbage glossy 2) is located within a physical region of 170 kb on chromosome 1. Based on sequence analysis of the genes in the mapped region, the gene designated Bol013612 was speculated to be the candidate gene. Gene Bol013612 is homologous to Arabidopsis CER4, which encodes fatty acyl-coenzyme A reductase. Sequencing identified a single nucleotide substitution at an intron/exon boundary that results in an insertion of six nucleotides in the cDNA of Bol013612 in LD10GL. The phenotypic defect of LD10GL was confirmed by a functional complementation test with Arabidopsis mutant cer4.

Conclusions: Our results indicated that wax crystals of cabbage mutant LD10GL are severely reduced and mutation of gene Bol013612 causes a glossy phenotype in the LD10GL mutant.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5704555PMC
http://dx.doi.org/10.1186/s12870-017-1162-8DOI Listing

Publication Analysis

Top Keywords

cuticular wax
8
cabbage brassica
8
brassica oleracea
8
oleracea var
8
var capitata
8
severely reduced
8
ld10gl mutant
8
gene bol013612
8
gene
7
ld10gl
6

Similar Publications

The cuticle, an extracellular hydrophobic layer impregnated with waxy lipids, serves as the primary interface between plant leaves and their environment and is thus subject to external cues. A previous study on poplar leaves revealed that environmental conditions outdoors promoted the deposition of about 10-fold more cuticular wax compared to the highly artificial climate of a growth chamber. Given that light was the most significant variable distinguishing the two locations, we hypothesized that the quantity of light might serve as a key driver of foliar wax accumulation.

View Article and Find Full Text PDF

Insertion of the β-ketoacyl-CoA synthase MdKCS2 promoter segment causes wax biosynthesis difference in apple peel.

New Phytol

January 2025

Key Laboratory of Fruit Postharvest Biology (Liaoning Province), College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.

Cuticular wax is essential for fruit to maintain moisture. Although the wax content of peel surface in apple (Malus spp.) varies, the detailed molecular mechanism remains unclear.

View Article and Find Full Text PDF

Plant cuticular waxes serve as highly responsive adaptations to variable environments. Aliphatic waxes consist of very-long-chain (VLC) compounds produced from 1-alcohol- or alkane-forming pathways. The existing variation in 1-alcohols and alkanes across Arabidopsis accessions revealed that 1-alcohol amounts are negatively correlated with aridity factors, whereas alkanes display the opposite behaviour.

View Article and Find Full Text PDF

Natural variation in an HD-ZIP factor identifies its role in controlling apple leaf cuticular wax deposition.

Dev Cell

December 2024

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, China. Electronic address:

Natural variation is an invaluable genetic resource for plant trait improvement. Here, we performed a genome-wide association study (GWAS) analysis and identified MdHDG5, which controls apple leaf cuticular wax. An A-to-G single-nucleotide polymorphism (SNP) on the HDG5 promoter is associated with HDG5 expression and hexacosanol content (a component of leaf cuticular wax).

View Article and Find Full Text PDF

All terrestrial plants possess a hydrophobic cuticle in the outermost layer of their aerial organs that is composed of cutin and wax. The cuticle serves as the first barrier between the plant and the surrounding environment and plays a key role in the resistance of plants to abiotic and biotic stressors. Additionally, they are closely associated with plant growth and development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!